Новые прогрессивные технологии биологически активных добавок из цветочной пыльцы и растительного сырья
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ
ТЕХНОЛОГИИ И ОРГАНИЗАЦИИ ПИТАНИЯ

УКРАИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ПИЩЕВЫХ ТЕХНОЛОГИЙ

Р.Ю. ПАВЛЮК
А.И. ЧЕРЕВКО
Г.А. СИМАХИНА
И.С. ГУЛЬБИ
Л.А. ЧУЙКО
В.В. ПОГАРСКАЯ
Л.М. СОКОЛОВА

НОВЫЕ ПРОГРЕССИВНЫЕ ТЕХНОЛОГИИ
БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВОК
ИЗ ЦВЕТОЧНОЙ ПЫЛЬЦЫ
И РАСТИТЕЛЬНОГО СЫРЬЯ

Харьков - Киев
2000
УДК 664.022.3:663.8

ISBN 5 - 7763 - 2608 - 7

Обобщены результаты многолетних фундаментальных исследований по научно-му обоснованию нового способа консервирования с применением жидкого азота пееределочного растительного сырья и разработке криогенных технологий получения биологически активных добавок, позволяющих не только сохранить все витамины и другие, биологически активные вещества, но и получить более обогащенный конечный продукт в легкоусвояемой форме. Представлены два принципиально новые технологии биологически активных добавок - криопорошки из цветочной пыльцы и амара, разработанные специалистами ХГАТОП (Харьков) и УГУПИ (Кiev). Предложены новые технологии их использования в профилактических продуктах питания иммуностимулирующих и радиозащитного действия.

Монография содержит сведения, являющиеся основой для изучения новых технологий консервирования пищевых продуктов и товаровирования продовольственных товаров.

Монография предназначена для специалистов пищевой промышленности и может рекомендоваться в качестве учебного пособия для студентов высших учебных заведений по специальности «Технология пищевых продуктов».

Рецензенты:
М.С. Гончаренко - доктор биологических наук, профессор, заведующий межфакультетской научно-исследовательской биологической лабораторией Харьковского государственного университета.

П.А. Калинин - доктор биологических наук, профессор, заведующий кафедрой биохимии биологического факультета Харьковского государственного университета.

Рекомендовано к печати научным советом ХГАТОП, протокол заседания № 10 от 30.06.2000 г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ .. 5

РАЗДЕЛ 1. НАУЧНЫЕ И ПРАКТИЧЕСКИЕ ПРЕДПОСЫЛКИ
СОВЕРШЕНСТВОВАНИЯ МЕТОДОВ ПЕРЕРАБОТКИ ЦВЕТОЧНОЙ ПЫЛЬЦЫ И РАСТИТЕЛЬНОГО СЫРЬЯ ... 8
1.1. Характеристика цветочной пыльцы (пчелиной обножки), особенности морфологического строения ... 10
1.2. Особенности химического состава и лечебно-профилактическое действие цветочной пыльцы ... 12
1.3. Анализ технологий производства пищевых добавок из цветочной пыльцы, их применение в продуктах питания ... 15
1.4. Преимущества использования низкотемпературного измельчения сырья и создание новых технологий измельчения пищевых продуктов с использованием жидкого азота .. 18
1.5. Анализ существующих технологий пастообразных концентрированных основ - полуфабрикатов из растительного сырья ... 22
1.5.1. Пастообразные и пюреобразные полуфабрикаты из яблока ... 23

РАЗДЕЛ 2. ХАРАКТЕРИСТИКА КАЧЕСТВА ЦВЕТОЧНОЙ ПЫЛЬЦЫ (ПЧЕЛИНОЙ ОБНОЖКИ) .. 28
2.1. Морфологическая характеристика цветочной пыльцы ... 29
2.2. Химический состав цветочной пыльцы (пчелиной обножки) 31
2.3. Исследование химического состава шротов (или выжимок) из цветочной пыльцы после экстракции .. 36

РАЗДЕЛ 3. НАУЧНЫЕ ОСНОВЫ НОВОЙ ПРОГРЕССИВНОЙ ТЕХНОЛОГИИ БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВОК ИЗ ЦВЕТОЧНОЙ ПЫЛЬЦЫ ... 40
3.1. Исследование влияния криогенного измельчения на биохимические характеристики цветочной пыльцы ... 41
3.2. Изучение при помощи электронной сканирующей микроскопии характера разрушения клеток цветочной пыльцы при измельчении с применением жидкого азота ... 47
Введение

Одной из важных задач социально-экономического развития Украины является увеличение выпуска полноценных конкурентоспособных продуктов питания, улучшение их качества, внедрение в производство новых безотходных и малоотходных технологий с максимальным использованием ценных биологически активных веществ (БАВ) сърь, использование нетрадиционных источников БАВ, разработка нового оборудования.

В условиях загрязнения значительной территории Украины радиоактивными веществами после аварии на Чернобыльской АЭС необходимо, чтобы в рацион питания населения увеличилась доля фруктов, овощей, нетрадиционного растиельного сърь (цветочной пыльцы, лекарственного сърь), а также приготовленных из них пищевых фитодобавок в виде порошков или паст и продуктов профилактического действия как источников витаминов, фенольных соединений с P-витаминной активностью, минеральных веществ, триптотенов, аминокислот и других веществ с потенциальными иммунодеструктивными и радиозащитными действиями.

Экологическая ситуация в Украине привела к резкому снижению иммунитета у населения. Повысить его, возможно, путем регулярного приема фитопродуктов с высоким содержанием БАВ.

В международной практике уделяется значительное внимание применению иммунопрофилактики и профилактики онкозаболеваний различных пищевых биологически активных добавок из цветочной пыльцы, различных лекарственных сърь, фруктов, овощей в виде порошков, паст, экстрактов, которые используются в различных продуктах питания (кондитерские и хлебобулочные изделия, безалкогольные напитки, соки и т.п.). В настоящее время в Украине пользуется популярностью различные импортные пищевые добавки фирм «Инарич», «Визиноп» и других. Современный рынок продовольственных товаров наполнен импортными продуктами, большинство из которых содержит вредные синтетические вещества. Однако внимание потребителей привлекает яркое, броское оформление товара, вкусовые свойства и доступные цены.

Потребность и отечественных консервированных продуктах на плодовоцелочной основе удовлетворяется не более чем на 20%, в витаминах - всего на 50%. Радиозащитные, иммуномодулирующие фитодобавки в Украине вырабатываются в незначительных количествах, ассортимент продуктов подобного действия значительно ограничен. Между тем, исходя из международных норм, потребность в таких биодобавках в Украине составляет около 1 млн. тонн в год.
Понятно, как важно быстрее и в наибольшем объеме развернуть производство профилактических продуктов питания и пищевых биологически активных добавок, возвращающих отечественным производителям. Это позволит удовлетворить в первую очередь потребность внутреннего рынка, а затем уже - выйти на внешний рынок с конкурентоспособными натуральными высококачественными продовольственными товарами.

Недостатком традиционных технологий при производстве пищевых добавок из растительного сырья являются значительные потери витаминов и других BAV.

Анализ различных способов переработки плодов, ягод, овощей и других видов растительного сырья показал, что одним из перспективных способов является использование низких температур (замораживание, сублимационная сушка, криогенное измельчение) и процессов механоактивации (дезинтегративное, криогенное и другие виды измельчения), которые обеспечивают максимальную сохранность витаминов и других BAV.

В связи с изложенными, проблема создания новых прогрессивных технологий биологически активных пищевых добавок из растительного сырья, полностью сохраняющих все витамины и другие BAV, и новых профилактических продуктов питания на их основе с применением антиоксидантов и адаптогенов из нетрадиционного лекарственного сырья является важной и актуальной. Все это определило необходимость проведения скрупулезных многочисленных исследований, посвященных этой проблеме. Исследования проводились в рамках целевых комплексных научно-технических программ ГКНТ СССР и ГКНТ Украины (на период 1988-1997 гг.).

В монографии обобщены результаты многолетних фундаментальных исследований при разработке научного обоснования нового способа переработки нетрадиционного растительного сырья - цветочной пыльцы и амарацта с применением жидкого и газообразного азота, при разработке криогенной технологии получения биологически активных добавок (БАД), позволяющей не только сохранять все витамины и другие BAV, но и получить более обогащенный конечный продукт в легкоусвоемой форме. Работы выполнялись в Харьковской государственной академии технологии и организации пищевого производства (ХГАТОП) и Украинском государственном университете пищевых технологий (УГУПТ, Киев). Разработаны две принципиально новые технологии пищевых биологически активных добавок - криопорошков из цветочной пыльцы и амарацта. От общепринятых технологий они отличаются тем, что полностью исключают тепловую обработку продукта. Технология БАД из цветочной пыльцы, разработанная специалистами ХГАТОП, включает замораживание и криогенное измельчение. Технология БАД из амарацта, разработанная в УГУПТ, включает как замораживание и сублимационную сушку с использованием жидкого азота, так и дезинтегративное измельчение (без охлаждения) высушенного сырья.

Данное направление работ было инициировано академиком АН Украины Б.И. Веркиным. Работы выполнялись в творческом содружестве со специалистами Физико-технического института низких температур АН Украины, Института проблем криобиологии и криомедицины АН Украины, Харьковского научно-исследовательского института медицинской радиологии, Межгосударственного предприятия «Пищевое» (Латвия), ЗАО «Харьковский плодовощепный комбинат №1», НПФ «ФИНАР».

На основе новых биологически активных добавок из цветочной пыльцы и амарацта предложены новые технологии и их использование в профилактических питательных продуктах питания иммуномодулирующего и радиозащитного действия (кондитерские изделия, порошкообразные смеси для напитков, пастообразные фитоконцентраты, фитофермы).
Раздел 1.

НАУЧНЫЕ И ПРАКТИЧЕСКИЕ ПРЕДПОСЫЛКИ СОВЕРШЕНСТВОВАНИЯ МЕТОДОВ ПЕРЕРАБОТКИ ЦВЕТОЧНОЙ ПЫЛЫ И РАСТИТЕЛЬНОГО СЫРЬЯ

Особое место среди растительного сырья занимает цветочная пыльца (пчелиная обложка), которая является уникальным продуктом лечебно-профилактического действия. Однако она не нашла должного применения в профилактическом питании, пищевой и фармацевтической промышленности из-за возникающих при ее применении трудностей. Это связано с тем, что цветочная пыльца представляет собой растительные клетки с очень прочной экзиной, которая не разрушается ни при хранении со щелочами и кислотами, ни при механическом воздействии. Имелись в мировой практике технологии, не дающие возможности разрушить внешнюю оболочку и получить некомпактнуго порошок, поэтому определенные продукты из пыльцы являются гранулы, наносы, экстракты. При этом ценные БАВ пыльцы используются примерно наполовину. Выживаемость среза (или шрота) зависит от условий хранения, а также от условий хранения. В них содержится в 1,5—2,0 раз больше БАВ, чем в вытяжках или экстрактах. Разрушение пыльцевых зерен позволяет более полно использовать содержащиеся в пыльце БАВ, а получение из нее порошка воспроизводит ее сферу применения в качестве биодобавок в различные продукты питания. Поэтому исследования, направленные на разработку безотходной технологии витаминных пыльцевых фитоферментов из цветочной пыльцы для различных продуктов профилактического действия (фитофармацевтики, патентообразные фитоконцентраты, напитки и т.п.), полимолекулярных витаминов и других БАВ, являются актуальными и своевременными.

Это возможно осуществить на основе новых подходов к переработке растительного сырья. По данным ЮНЕСКО, перспективным методом консервирования является консервирование при помощи хлорда. Поэтому исследования в настоящей работе направлены на разработку новой безотходной технологии витаминных биологически активных фитоферментов (ВФ) и цветочной пыльцы, которая обеспечивает полную сохранность витаминов в пудерных средствах и других БАВ, а также создание на их основе новых профилактических продуктов питания.

Предлагаемая технология витаминизированных фитоферментов из цветочной пыльцы основывается на использовании жидкого азота как источника низких температур и иной среды на стадии замораживания. Использование жидкого азота при замораживании и измельчении цветочной пыльцы определяет особенности биохимических, физико-химических и технологических процессов, специфика которых изучена в этой работе.

Мировая статистика свидетельствует, что жидкого азота в качестве хладагента и иной среды достаточного количества для транспортировки, хранения и продуктов, производимых сельскохозяйственной продукции многими ведущими фирмами. Появилось немало новых азотных технологий. Недостатком применения жидкого азота длительное время считалась его сравнительно высокая цена. Однако в настоящее время наметилась тенденция снижения цен на жидкого азота. Это связано с тем, что в газовой промышленности при производстве искусственных материалов, необходимых в ракетной и метанолной промышленности, вырабатывается и используется жидкое кислород, побочный продукт, при получении которого является жидкого азота. В связи с этим стоимость жидкого азота сравнительно не высока. В настоящее время в большинстве стран соотношение затрат на капиллярность в производстве и цен на хладагент смешено в пользу жидкого азота.

Проблема холодильной переработки растительного сырья, в частности криогенного измельчения, достаточно сложна. Ее решение основано на знании химических и биохимических изменений витаминов и других БАВ, биополимеров, таких как белки, углеводы, ароматические веществ и других компонентов под влиянием низких температур на стадии замораживания и измельчения. При этом необходима комплексная оценка качества перерабатываемого сырья и конечных продуктов, их микробиологическая и экологическая характеристики. В Украине применение азотных технологий для криогенного измельчения находится на стадии опытно-экспериментальных и полупродуктовых разработок. Теоретические основы биохимических, структурно-механических процессов, протекающих с введением жидкого азота при замораживании и криогенном измельчении цветочной пыльцы, практически отсутствуют. А без глубоких знаний всех происходящих при этом процессов, без знаний закономерностей взаимодействий БАВ невозможно достичь высокой эффективности использования жидкого и газообразного азота.

В связи с изложенным проблема создания научных основ для разработки безотходной технологии витаминных БАВ из цветочной пыльцы и создания на их основе новых профилактических продуктов является важной и актуальной.
1.1. Характеристика цветочной пыльцы (пчелная обножка), особенностности морфологического строения

Пыльца представляет собой мелкие пыльцевые зерна-микроспоры - мужские половые клетки растений, имеющие размеры от 10 до 140 мкм в зависимости от исходного растения (рис. 1.1). Половая клетка отвечает за воспроизводство вида и, как семя, готовящееся прорастать, должна вести в себя запасы разных богатых по своему составу веществ, обеспечивающих ему возможность развиваться без помощи внешних ресурсов, чтобы дотянуться до семяпочки и отложить ее.

Пыльцевое зерно покрыто двуслойной оболочкой - внутренней (интита) и внешней (экзина). По химическим и физическим исследованиям интита, окружающая протопласт, непрочна. По данным ряда авторов, она состоит из целлюлозных микрофибрилл и матрикса из гемисклеллоз, пектиновых веществ и белков.

Рис. 1.1. Схематический разрез клетки цветочной пыльцы:
1-наружная оболочка (экзина); 2 - целлюлозное уплотнение; 3 - внутренняя оболочка (интита); 4 - генеративное ядро; 5 - вегетативное ядро; 6 - поры.

Экзина настолько прочна, что не разрушается ни при кипячении в кислотах и основаниях в течение нескольких часов, ни при воздействии протеолитических ферментов желудочного сока и даже механическом воздействии. Это доказывает, что ее роль и состоит в сохранении содержащего пыльцевого зерна в любых неблагоприятных условиях.

Единственным местом проникновения пищеварительных ферментов в пыльцы являются поры экзины, поэтому переваривание составных частей пыльцы, как в организме человека, так и пчел затруднено. Этим же обстоятельством объясняется и пониженный выход БАВ из пыльцы при получении из нее экстрактов, вытяжек, настоев.

Пыльцевые зерна бывают различной формы (овальные, эллипсоидные, многоугольные, треугольные, шиповидные и т.п.) и с размером от 10 до 140 мкм (рис. 1.2 и табл. 1.1). Из известных видов цветочной пыльцы, самые крупные зерна у пыльцы тыквы - 140 мкм, самые мелкие у незабудки - 10 мкм.

Рис. 1.2. Зерна пыльцы (клетка) различных растений:
1 - акация белая; 2 - боярышник; 3 - василек голубой; 4 - вереск; 5 - вишня; 6 - гречка; 7 - горчица; 8 - ява; 9 - капуста; 10 - липа; 11 - кукуруза; 12 - клевер белый; 13 - клевер шведский; 14 - клевер красный; 15 - люцерна; 16 - малина; 17 - маргаритка; 18 - мальва; 19 - мак; 20 - огурец; 21 - одуванчик; 22 - подсолнечник.
Таблица 1.1. Средние диаметры зерен самых распространенных видов пыльцы

<table>
<thead>
<tr>
<th>Название растения</th>
<th>Диаметр зерна пыльцы, мкм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amygdalus communis L.</td>
<td>Миндаль обыкновенный</td>
</tr>
<tr>
<td>Melilotus marochoica Pers.</td>
<td>Донник</td>
</tr>
<tr>
<td>Militias melissophyllum L.</td>
<td>Медонос</td>
</tr>
<tr>
<td>Parthenocissus</td>
<td>Деревяный виноград</td>
</tr>
<tr>
<td>Lavandula spica L.</td>
<td>Лаванда широколистная</td>
</tr>
<tr>
<td>Rhamnus frangula L.</td>
<td>Крушина ломкая</td>
</tr>
<tr>
<td>Rosmarinus officinalis L.</td>
<td>Розмарин лекарственный</td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td>Сосна обыкновенная</td>
</tr>
<tr>
<td>Acer pseudoplatanus L.</td>
<td>Яичко</td>
</tr>
<tr>
<td>Vicia L.</td>
<td>Вика</td>
</tr>
<tr>
<td>Hedera helix L.</td>
<td>Плющ обыкновенный</td>
</tr>
<tr>
<td>Trifolium campestre Sehreb</td>
<td>Клевер полевой</td>
</tr>
<tr>
<td>Medicago L.</td>
<td>Люцерна</td>
</tr>
<tr>
<td>Tilia platyphyllos Scop.</td>
<td>Липа купиниастая</td>
</tr>
<tr>
<td>Medicago lupulina L.</td>
<td>Люцерна хмелевидная</td>
</tr>
<tr>
<td>Cornus mas L.</td>
<td>Кизил обыкновенный</td>
</tr>
<tr>
<td>Fagopyrum esculentum L.</td>
<td>Гречиха</td>
</tr>
<tr>
<td>Onobrychis sativa L.</td>
<td>Эсператт обыкновенный</td>
</tr>
<tr>
<td>Corylus avellana L.</td>
<td>Лещина</td>
</tr>
<tr>
<td>Cytisus Koch</td>
<td>Ракитник</td>
</tr>
<tr>
<td>Calluna vulgaris Salis</td>
<td>Вереск обыкновенный</td>
</tr>
<tr>
<td>Trifolium repens L.</td>
<td>Клевер белый</td>
</tr>
<tr>
<td>Vaccinium myrtillus L.</td>
<td>Черника</td>
</tr>
<tr>
<td>Ulex amanus L.</td>
<td>Утенников карликовый</td>
</tr>
</tbody>
</table>

цветочной пыльцы. В пыльце содержится значительное количество полоненного белка (20...30 %), сахаров (25...48 %), которые представлены в виде моносахаридов (фруктозы и глюкозы).

Цветочная пыльца отличается высоким содержанием различных биологически активных веществ, которые играют важную роль в обмене веществ, а также обладают фармакологическим действием.

Следует отметить, что в пыльце содержится значительное количество протеинов. Их содержание в зависимости от вида пыльцы варьируется от 7 до 30 %, 20 % - считается хорошим средним показателем. Одно это уже говорит о важности в пыльце в ряд ценных питательных продуктов.

По данным специалистов, медиков, в цветочной пыльце незаменимых аминокислот содержится в 5...6 раз больше, чем в говядина, яйцах, сыре. Ниже приведены данные по аминокислотному составу цветочной пыльцы.

Аминокислотный состав цветочной пыльцы, в г/100 г сухого вещества:

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>Содержание, г/100 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цистин</td>
<td>0,6</td>
</tr>
<tr>
<td>Гистидин</td>
<td>1,5</td>
</tr>
<tr>
<td>Триптофан</td>
<td>1,6</td>
</tr>
<tr>
<td>Метионин</td>
<td>1,7</td>
</tr>
<tr>
<td>Фенилаланин</td>
<td>3,5</td>
</tr>
<tr>
<td>Триптофан</td>
<td>4,6</td>
</tr>
</tbody>
</table>

По мнению специалистов, медиков, цветочная пыльца является необычайно богатым продуктом питания, равно как и нет в природе.

После аминокислот следует отметить значительное содержание в цветочной пыльце витаминов. Особенно много витамина С (50...205 мг/100 г), витаминов группы B (в частности B1 - 0,4...1,5 мг/100 г и B2 - 0,5...1,9 мг/100 г); а также токоферола (10...170 мг/100 г), B - каротина (10...31,5 мг/100 г) и биофлавонидов. Известно, что роль витаминов неоценима в иммунопрофилактике населения.

Доказано, что практически все витамины обладают антиоксидантным, иммуномодулирующим и радиоопротекторным действиями. В настоящее время специалисты-онкологами установлено также их противовоспалительное действие. Особое место отводится B - каротину, а - токоферолу, аскорбиновой кислоте. Известно, что для организма человека основными поставщиками перечисленных витаминов являются ягоды, овощи, фрукты, нетрадиционное растительное лекарственное сырье, и в частности, цветочная пыльца.

В пыльце был обнаружен также гликозид - рутин, встречающийся в изобилии в пыльце гречихи - примерно 17 мг/100 г. Известно, что рутин благоприятно
действует на стенки кишечника, укрепляя их, а также предупреждает появление мозговых кровоизлияний, сердечных приступов.

Цветочная пыльца отличается также высоким содержанием фенольных соединений с Р-витаминной активностью - 1,0...2,0 % в зависимости от вида пыльцы. В настоящее время фенольным соединениям растительного сырья специалистами-медиками отводится значительное место в профилактике различных заболеваний. Известно, что фенольные соединения обладают способностью гасить свободные радикалы в организме человека, которые образуются при воздействии различных повреждающих факторов (например при старении, психозовом воздействии, стрессах, физических нагрузках, при воздействии низких доз радиации и т.п.). Кроме того, фенольные соединения в желудочно-кишечном тракте организма человека образуют нерастворимые комплексы с натрием и калием, препятствуют их всасыванию и таким образом выводят их из организма человека.

В пыльце содержатся антибиотики, факторы роста и стероидные соединения. С последними связан и эстрогенный эффект, т.е. стимулирование процесса образования и созревания яйцеклеток у животных. Содержание жиров в пыльце выражается от вида растений и чаще всего находится в пределах 1...5 %. Жиры представлены, в основном, незаменимыми жировыми кислотами (пальмитиновой, линолевой и эйкозапентаеновой), которые, соединяясь с холестерином, образуют легкорас-творимые соединения, быстро выводимые из организма. Таким образом, они имеют существенное значение в профилактике и лечении атеросклероза. Высказано мнение о недопустимости жировых кислот в пыльце. Иммунитета организма к инфекционным заболеваниям, а также ряд заболеваний кожи. По мере учё-ных, эти соединения тормозят действие канцерогенов. Среди ВАБ, обладающих также антиканцерогенными и иммуностимулирующим действием, стоит отметить поставляется, пектиновые вещества, некоторые минеральные вещества (например, Ca, Se и др.), биофлавоноиды и т.п.

По данным Института АПИМОНЕЯ (Румыния), а также многих исследователей, пыльца является естественным поливитамином. В герметической упаковке цветочная пыльца может храниться, без применения холода, в течение года и более без изменения качества.

Цветочная пыльца является уникальным продуктом лечебно-профилактического действия, является "чудо" продуктом. Ее действие универсально. Она благоприятно влияет на функции желудка и кишечника, восстанавливает аппетит, по-
лик, и непрерывно расширяется сфера ее использования. По степени использования цветочной пыльцы в различных отраслях пищевой промышленности может быть составлен следующий перечень:
- в кондитерской промышленности при изготовлении кремов, желе, начинок для конфет, жевательной, драже, печенья, помадных масс;
- в хлебопекарной промышленности при изготовлении различных хлебобулочных изделий, в том числе профилактического действия;
- в безалкогольной промышленности при изготовлении сухих напитков и соков, коктейлей безалкогольных напитков;
- в молочной промышленности при изготовлении твердых и мягких сыров, творожных масс, коктейлей, при изготовлении мороженого;
- в ликеро-водочной промышленности при изготовлении ликеров, бальзамов, настоя.

Высокие вкусовые достоинства и высокая биологическая ценность цветочной пыльцы при ее использовании в качестве пищевой добавки позволяют резко улучшить качество продуктов питания, их лечебно-профилактические свойства и повысить на них спрос.

В настоящее время в мировой практике существуют два общепринятых способа переработки цветочной пыльцы:
- сушенная в вакууме обожжённая (цветочная пыльца), механический "тепловой" размол высушенной пыльцы и использование её в продуктах питания в нативном виде;
- получение вытяжек или настоев из высушенной цветочной пыльцы и использования в продуктах питания в виде экстрактов.

Для получения высушенной пыльцы в пчеловодческих хозяйствах пчеловоды (с влажностью 18-20 %) собирают при помощи пылесосов, инспектируют и сушат в вакууме или в установке для сушки в вакууме в течение 180-200 часов до влажности 5-8 %. Затем фасуют в полиэтиленовые мешки, упаковывают в производственной линии в конфеты, коктейли, стеклянную банку, тару. Цветочную пыльцу используют в качестве пыльцы в пищевые продукты, такие как молоко, мороженое, варенье. При использовании в качестве пыльцы в пищевые продукты, такие как молоко, мороженое, варенье, цветочная пыльца улучшает вкусовые качества продуктов, повышает их питательную ценность.

При получении вытяжек, настоев (или экстрактов) с применением водных или водных экстрагентов ценные БАВ и питательные вещества цветочной пыльцы используются примерно наполовину. Выжившие из нее (или в пролом) идут в отходы на которые скот, что нерентабильно. Повышение цен на ладан и пыльцы позволило использовать их в виде БАВ. Получение мелкопухового некоммутирующего порошка расширило сферу применения пыльцы в качестве пищевой добавки и различные продукты питания, и позволило бы использовать ценную продукт без отходов.

В настоящее время за рубежом цветочную пыльцу используют довольно широко в различных отраслях пищевой промышленности. Например, только в Латвии и Литве за год перерабатывают и используют около 150 тонн цветочной пыльцы. В Украине - всего около 100 тонн, хотя возможности пчеловодческих хозяйств здесь существенно шире. Однако нет объемных заказов на заготовку цветочной пыльцы. Единственный пример использования пыльцы украинскими производителями: НПО фирма "Цветник" разработала и вырабатывает драже "Цветик".

Часть цветочную пыльцу, вырабатываемую в Украине, используют при изготовлении ароматизаторов и косметических средств. Значительная часть цветочной пыльцы экспортируется в Россию для изготовления хлебобулочных изделий. К сожалению, в Украине нет объемных заказов на заготовку цветочной пыльцы, что не позволяет использовать этот уникальный лечебно-профилактический продукт.

На основе литературных данных о свойствах цветочной пыльцы, а также конкретных технологических процессов получения добавок из цветочной пыльцы можно сформулировать и теоретические основы использования этого уникального продукта. На производстве, в медицинской практике, цветочную пыльцу используют в качестве добавки в пищевые продукты, такие как молоко, мороженое, варенье. Цветочная пыльца улучшает вкусовые качества продуктов, повышает их питательную ценность.

К числу наиболее прогрессивных технологий консервирования, применяемых в международной практике, относятся замораживание, сублимационная сушка и криогенное замораживание. Известно, что холодильная обработка пищевой продукции обеспечивает наиболее полное содержание натуральных свойств, питательных веществ, витаминов и других БАВ. Эти преимущества определяют превосходства холодильного консервирования пищевых продуктов над другими способами (соление, копчение, тепловая сушка, стерилизация), они открывают большие возможности для снабжения полноценной витаминной продукцией круглый год.
1.4. Преимущества использования низкотемпературного измельчения сырья и создание новых технологий измельчения пищевых продуктов с использованием жидкого азота

Измельчение сырья как технологический прием широко используется в различных отраслях пищевой промышленности и в значительной степени предопределяет качество готового продукта. В частности, с уменьшением размера частиц измельченного продукта растет его площадь поверхности. Это дает возможность более полно экстрагировать биологически активные, питательные, ароматические вещества растворителем, а также приводит к повышению усвояемости измельченных продуктов организмом человека.

Традиционное измельчение в заводских условиях производят при помощи "теплого" машинного измельчения, которое имеет два существенных недостатка. Во-первых, измельчение производится в атмосфере воздуха, а значит в присутствии кислорода, что приводит к интенсивному окислению и разложению веществ, находящихся в обрабатываемом сырье. Вторым недостатком является разогрев обрабатываемого материала, в результате которого также происходит ухудшение качества продукта, потеря его ценных свойств. Разогрев происходит в результате выделения теплоты при механическом разрушении, а также в результате контакта с поверхностью рабочего органа измельчителя, где локальные температуры могут достигать сотен градусов Цельсия. В результате традиционного "теплого" измельчения теряется значительная часть БАВ, ароматических и питательных веществ.

Указанных недостатков можно избежать, если измельчение вести при низких температурах в инертной среде. Из существующих хладагентов, обеспечивающих низкие температуры при измельчении, как показывает анализ данных литературы, наиболее приемлемым для промышленного использования является жидкый азот особой чистоты (ГОСТ 9293-74). Ему свойственны низкая температура кипения (-196°C), химическая и биологическая инертность, а также безопасность для работающего персонала. Жидкий азот обеспечивает измельчаемый массе хрупкость, предохраняя ее от перегрева и уплотнения качества. Наличие инертной и сухой атмосферы способствует сохранности в измельченном продукте нативных свойств использованного сырья.

Оборудование для криоизмельчения комплектуют из стандартных мельниц (шаровых, вибрационных, молотковых, роторных, хлопьевых) с подводом в них хладагента - жидкого азота. Низкотемпературное (крионное) измельчение веществ в криомельницинах ведут двумя способами:

1) измельчение в среде жидкого азота в несколько этапов (мокрое измельчение) с предварительным охлаждением материала до состояния окружения;
2) измельчение в газовой низкотемпературной среде (за счет впрыскивания хладагента в помольную камеру).

Преимущества криогенного измельчения по сравнению с "тепловым":
- возможность сохранения БАВ, ароматических веществ измельченных пищевых продуктов;
- сохранение исходных свойств и более полное их раскрытие при измельчении;
- возможность измельчения веществ, не подходящихся обычным методам помола;
- возможность получения высокой однородности помола;
- затраты энергии при помоле охлажденных окружных материалов, в несколько раз меньше, чем материалов, имеющих температуру окружающей среды.

Так, по зарубежным данным, при обработке оживленных до хрупкого состояния материалов требуется затраты энергии в 10 раз меньше, чем при обработке материалов, поступающих в измельчитель в "теплом" состоянии, а производительность процесса измельчения повышается в 2 раза.

Целесообразность использования криогенного измельчения тесно связана с вопросом экономической эффективности процесса измельчения при низких температурах. Стоимость охлаждения должна компенсироваться преимуществами криогенной технологии, которые для пищевых продуктов определяются их качеством, а именно: сохранностью витаминов, ароматических и других БАВ, повышением биодоступности и физиологической эффективности продуктов, что эквивалентно созданию дополнительного количества готового продукта более высокого качества.

Первоначально криогенное измельчение применяли фирмы США, Германии, Японии, Франции для восстановления и измельчения ценных материалов из производственных отходов автомобильной и электротехнической промышленности. Затем преимущества криогенного измельчения стали привлекать внимание производителей порошков из овощей, фруктов, приветствий, термоустойчивых продуктов. Так, например, фирмой Merry Balfour LTD (США) была разработана технология криогенного измельчения пикника и других термоустойчивых материалов. Компания Cryopowder Service (Великобритания) стала перерабатывать этим способом ячмень, фаринепроизводимые, полимерные материалы.

В странах СНГ криогенное измельчение в опытно-промышленных масштабах применения пока не нашло. Однако накоплен положительный опыт экспериментального криогенного измельчения некоторых пищевых продуктов: мясных, рыбных, фаршированных и наполнителях консервов (Московский технологический институт мясной и молочной промышленности). Сравнительные исследования по некоторым показате-
дам качества микроструктурным, органолептическим, химическим - показали, что криогенное измельчение указанных пищевых продуктов способствует сохранению первоначальных структурных свойств, вкусовых качеств, цвета, вкуса.

Если в мясной и рыбной промышленности криогенное измельчение приводит к ускорению и упрощению переработки, снижению энергозатрат, то криогенный способ переработки лекарственного сырья, промышленных, при правильном сохранении существующих начал в продуктах переработки равнозначно созданию дополнительного количества готового товара. За рубежом распространен способ криогенного размоля в производственных промышленных и их смесей, что позволяет максимально сохранить такие БАВ, как эфириные масла и витамины С. В СНГ способы криогенного измельчения в промышленных масштабах пока не используются, хотя преимущества их применения неоспоримы.

Специалистами Харьковской государственной академии технологий и организации пищевой и биохимического института высоких температур НАН Украины под руководством проф. Папюк Р.Ю. была разработана криогенная технология измельчения суточных соусов, ягод, овощей, хлеба, пицеварительного и нетрадиционного лекарственного сырья в специализированном производстве и внедрена в промышленное производство в НПО "Крионик" (Украина), в Межрегиональном предприятии "Тиеста" (Латвия). Установлено, что при криогенном измельчении перечисленного выше различного высушенног о растительного сырья при температуре -10°C и ниже происходит увеличение концентрации БАВ (витамина С, бета-каротина, фенольных соединений с Р-витаминной активностью, ароматических веществ, свободных аминокислот) по сравнению с исходным сырьем на 10...80 %. Увеличение происходит за счет деградации связей между биополимерами и нуклеоелектрическими связями с отображением последних, а также связано с существенной деструкцией растительного сырья и особенностями среды (небольшой температурой и инертностью). Полученные мелкодисперсные порошки рекомендованы для использования в качестве вкусовых добавок для различных продуктов., ягод и диетического питания, в порошкообразные концентраты лечебно-профилактического действия, в витаминные приправы, напитки, фиточай лечебно - профилактического действия, асортимент которых в странах СНГ пока ограничен.

Кроме экспериментов, проведенных в этой области ХГАТОП и ФТИНТ НАНУ, известны лишь единичные поисковые работы. Научно - исследовательским и конструкторско-технологическим институтом холодной промышленности (Москва) проводились исследования по переработке чесночного мяса в замороженном и измельченном виде. Полученный продукт удобен при использовании в технологических процессах (например, при разнообразном распределении при перемешивании мясного фарша), он способен сохранять органолептические свойства при холодном хранении в течение длительного времени. Изделия, в которых использован чесночный криогенное измельчение, отличаются улучшенными вкусовыми свойствами.

Таким образом, обзор литературы и анализ проблем показали, что криогенное измельчение перспективно использовать при производстве порошкообразных витаминных концентратов с высоким содержанием БАВ из ягод, овощей, промышленных и нетрадиционных лекарственных и растительных продуктов, а также в других ценных сырых, которые не удаляется измельчить до нужной степени дисперсности традиционным способом.

Процесс низкотемпературного измельчения по сравнению с традиционным "тепловым" измельчением имеет следующие основные преимущества: возможность сохранения БАВ, ароматических веществ измельченных пищевых продуктов; сохранение исходных свойств сырья и более полное их раскрытие при измельчении; большую эффективность процесса при меньших затратах энергии; возможность получения продукта высокой степени однородности; возможность измельчения материалов, не поддающихся обычным методам помола; возможность получения частиц с размерами, недоступными при традиционных методах измельчения.

Преимущества использования криогенной технологии измельчения по сравнению с "тепловыми" видами для пищевых продуктов определиются высоким качеством получаемых порошков, а именно: сохранностью витаминов, ароматических и других биологически активных и питательных веществ, а также повышением биологической доступности и физиологической эффективности измельченных продуктов, что эквивалентно созданию дополнительного количества готового продукта.

Результаты исследований по выявлению закономерностей биохимических, физико-химических, технологических процессов, происходящих в сырые при криогенном измельчении из-за получения пищевых продуктов высокого качества, в научной литературе представлены неполно и только по отдельным видам сырья, в том числе растительного. По цветочно-пыльцевой системе растений работы такие данные отсутствуют. В связи с этим является актуальной и актуальнейшими представленные в работе результаты исследований процессов, происходящих при криогенном измельчении пыльцы (чечевице оленя). Полученные данные послужили основой для разработки технологии натуральной биологически активной порошкообразной витаминной пищевой добавки - исключающего полуготового из видовой пыльцы и продуктов с ее использованием.
1.5. Анализ существующих технологий пастообразных концентрированных основ - полуфабрикатов из растительного сырья

Плодовые и овощные пасты и их смеси получили в последнее время у нас в стране и, особенно, за рубежом широкое распространение благодаря высокой биологической и пищевой ценности, технологичности производства. Продукты на их основе производятся из одного или нескольких видов паст с использованием различных пищевых добавок с целью придания продукту заданных свойств.

Первоначальной при производстве пастообразных продуктов является пюре, которое представляет собой однородную массу размеченных биливиксовыми или пропариванием пищевое ягоды или овощей. Пюре, как свежеприготовленное, так и консервированное, служит основой при производстве соусов с мятой, нектаров, пюреобразных консервов для детского, диетического или профилактического питания. Содержание растворимых сухих веществ в пюре зависит от вида исходного сырья и колеблется от 11 % для пюре из яблок до 15...20% для пюре из томатов.

При концентрировании пюре (с сахаром или без него) получают пасты. Основные из них:
- томатные пасты с содержанием сухих веществ 25, 30, 35 и 40 \\
- натуральные плодовые пасты.

Плодовые пюре концентрируют под вакуумом без добавления сахара и консервантов при низкой температуре. Пасты готовят из яблок, груш, сливы, винограда, дыни, арбузов и их смесей с использованием оборудования томатных линий. Конечная концентрация сухих веществ зависит от вида плодов и составляет: для яблочной - 20 \\
- яблочной, персиковой, сладковато-яблочной и сладковато-яблочной - 32...37 \\
- виноградной - 60 \\

Фруктовые соусы и приправы готовят увариванием фруктового пюре с небольшим количеством сахара (1/5 части от массы пюре), без добавления или с добавлением пряностей. Содержание сухих веществ во фруктовых соусах и приправах не менее 21 \\

Повидло плодовое или ягодное пюре (или их смесь), уваренное с сахаром (с добавлением или без добавления пищевого лектина и пищевых кислот) на одну часть сахара берут 1,25 части пюре. Содержание сухих веществ - 67 \\

Пасть в зависимости от назначения подразделяют на пасты-полуфабрикаты и пасты, готовые к потреблению. Пасты-полуфабрикаты применяют в различных отраслях пищевой промышленности: в кондитерской (в качестве сиропов при производстве соусов с мятой, нектаров, морсов безалкогольных напитков, соусов, приправ, майонезных паст), в молочной (в качестве наполнителя в творожные массы, кефир, йогурт, мороженое), в кондитерской и хлебопекарной промышленности (в качестве булочных и кондитерских изделий, хлеба, паст, йогурт, кефир, тесто и др.), в мясном производстве (в качестве пищевых добавок, биопродуктов, кисло-кислых, мясных, кулинарных), в детском и диетическом питании (как плодово-ягодные основы). Они дают возможность снизить калорийность продуктов и повысить содержание в них биологически активных веществ.

К пастообразным продуктам относятся как сами пасты, полученные путем консервирования пюре, так и пасты, полученные с использованием загустителей и стабилизаторов.

1.5.1. Пастообразные и пюреобразные полуфабрикаты из яблок

В мировом производстве фруктов, урожай которых составляет 300 млн. т, яблоки занимают четвертное место (36 млн. т в год), после винограда (70), апельсинов (55) и бананов (40). Большая часть фруктовых консервов вырабатывается из яблок, в том числе яблок летних сортов, которые не обладают необходимыми технологическими свойствами и требуют трудоемкой подготовки. Поэтому в ассортименте превалируют консервы, вырабатываемые из пропитанных плодов, что дает возможность использовать все сорта яблок. К числу таких консервов относятся пасты, пюре, повидло.

Во ВНИИКТИПлодоовом, Молдавском НИИПП разработана технология получения натуральных фруктовых паст с использованием оборудования томатных линий. Пасты готовят из яблок, винограда, сливы, других фруктов и их смесей.

При производстве паст плоды моют, сортируют по качеству, жимлями извлекают из томатных дробилок, виноград дробят с отделением гроздей. Затем плоды бливают в непрерывно действующем шнековом бливающей машине в течение 10..15 мин при температуре 100 °C. Бливающие яблоки пропускают вначале на проточную машину с диаметром отверстий с 5...6 мм, где отделяются косточки, семечки и кожица. Полученную грубо измельченную массу дополнительным пропускают на строенной проточной машине с диаметром отверстий с 1,2; 0,8 и 0,4 мм. Тонкую проточную массу смешивают (при получении двухкомпонентной пасты), либо сразу направляют на стерилизацию, которую проводят в трубчатом теплопеномежнике в течение 120 сек при температуре 110 °C или в течение 30 сек при температуре 115 °C. Массу после стерилизации охлаждают до 70...80 °C, затем уваривают в выбритых аппаратах томатных линий. Содержание сухих веществ яблочной, виноградно-яблочной и сливово-яблочной паст 32...37%.
Натуральные фруктовые пасти отличаются высокими потребительскими свойствами, сохраняют свойственные исходному сырью цвет, вкус, аромат. Фруктовые пасти могут быть использованы как самостоятельно, так и в качестве компонентов пищевых продуктов (молочных, кондитерских, хлебопекарных, в массовом и индивидуальном питании) в качестве наполнителей, загустителей, красителей, ароматизаторов, заменителей сахара при производстве мороженого, кремов, тортов, конфет, мармелада, мучных изделий и т.д. Использование пасти дает возможность снизить калорийность продуктов, повысить содержание в них БАВ.

Институт питания АМН СССР рекомендовал фруктовые пасти для детского и диетического питания, а также в качестве добавок в творожные и другие молочные продукты.

Во ВНИИТП "Консервпромкомплексе" в отделе технологии овощных и динамических консервов разработан ассортимент пастообразных диетических консервов для лиц, страдающих нарушением обмена веществ (сахарным диабетом), включающий концентрированную сладкую продукцию - помидор с сахаром, сорбитом или кислотой (яблочная, яблочно-смородиновая).

Для производства диетических фруктовых пасти используют сжиганье или быстрозамороженные плоды и ягоды, а также плодово-ягодные полубарбекузы, которые подготовлены соответствующим образом, придают, смешивают с водными растворами сорбита, кислоты или сахара, уваривают до массовой доли растворимых сухих веществ 38...40% для пасти яблочной и яблочно-смородиновой. При подготовке пасти "Обусловлен" яблоко режут на дольки, уваривают с добавленным 10...15% воды. В разваренную протертую массу добавляют кислот или сорбитный сироп, корицу и уваривают до 27% сухих веществ.

К группе продуктов профилактического питания можно также отнести пасть из яблока, обогащенную пектином (разработка ВНИИТПплодотроп), и яблочно-пектиновую пасть (разработка Могилевского технологического института, Белоруссия). Пектин используют в качестве биологически активной добавки, придающей продукту диетические свойства, поэтому приятно, что в пектиновых вещества обладают защитными и антитоксическими действиями, способствующими развитию нерастворимых комплексных соединений со свежим и другими тяжелыми металлами и выведение из организма радиоактивные вещества.

При выработке яблочной пасти, обогащенной пектином, используют сжиганье протертые яблоки или дырок-полубарбекузы, заготовленный метод аспириционного консервирования с добавлением сахара, яблочного пектина и лимонной кислоты. Продукт фасуют и стерилизуют. Массовая доля растворимых сухих веществ в готовом продукте должна быть не менее 32%, pH 3.2...3.6.

В Могилевском технологическом институте с целью рационального использования плодоовощного сырья была разработана технология производства яблочно-пектиновой пасти из яблочных выжимок, а также производство яблочного сока, которая внедрена на Бобруйском винодельческом заводе. Большая потребность в пектиновых препаратах и недостаточное количество специализированных линий по производству пектина вызывали необходимость разработки упрощенной технологии получения пектиновых препаратов из яблочных выжимок. Такая разработка решает сразу две проблемы - внедрение безотходной технологии и увеличение ресурсов пектиновых препаратов. Технологический процесс производства пасти состоит в следующем: выжимки из яблока выгружаются из пресса в сборный бункер, из него элеватором подаются в реактор с донной рамкой, в которую поступает греющий пар или горячая вода. Реактор оборудован также мешалкой и барботером.

В реактор к выжимкам добавляют 5%-й раствор сернокислого яда и аппарат закрывается крышкой. После этого включают мешалку и нагревают содержимое реактора до 75...85°С. При этой температуре выжимки, при непрерывном перемешивании, выдерживают 1...3 часа в зависимости от сорта яблока. После этого в смесь добавляют горячую воду для получения соотношения 1:1, при этом количество раствора сернокислого яда составляет 1:0,6 (на сухую массу выжимок). Температура добавленной воды не должна превышать 80...85°С. Выжимки перемешивают с водой и выдерживают еще 0,5...1 час. Затем в реактор через барботер подают острый пар давлением 0,15...0,2 МПа в течение 7...9 минут. Разжиженная масса выжимок поступает на доовоенную прессовую машину через сите с диаметром отверстий 0,5...1,2 и 0,4...0,8 мм. Полученная растительная масса отбрасывается в сборник готовой продукции, где доводится до стандартных показателей. Для улучшения консистенции и повышения желирующей способности яблочно-пектиновая пасть гомогенизируют, для чего используют коллажевые мельницы. После ее пасти в сборнике проверяют на содержание сернокислого анилина, которое должно быть не менее 0,2% (в пересчете на 80 г), чтобы обеспечить сохранность пасти при хранении. Яблочно-пектиновая пасть должна иметь следующие показатели: массовая доля растворимых сухих веществ 5...6,7%, пектиновых веществ 0,8...0,9%, титурамая кислотность (по яблочным кислотам) 0,4...0,8%.

Предложенный способ позволяет перерабатывать отходы сокового производства и получать продукт, пригодный для использования в кондитерской и промышленности при производстве желеобразных изделий. Мармелад, сваренный из данной яблочно-пектиновой пасти, имеет слабовыраженный натуральный вкус яблок. Наиболее целесообразно добавить яблочно-пектиновую пасть к яблочному или
другим видам фруктового пюре. Улучшающая способность смеси при этом увеличивается в 1.9 раза, обеспечиваясь высокие органолептические показатели. В производстве кондитерских изделий разрешено до 50 % вяленого пюре заменять яблочно-яблониевой пастой. Изделия с добавлением пектин способствуют улучшению структуры раковин каш и мучных изделий, обладающие способностью выводить из организма человека некоторые тяжелые металлы и радиоактивные элементы.

ВНИТИ “Консервноремкомплекс” совместно с Одесским производственным объединением кондитерской промышленности показало высокую эффективность использования в производстве мармелада, конфет и начинок для карамели не только фруктовых, но и овоцекруповых паст (яйчно-яблочную, кабачково-яблочную).

Овоцекруповые пасты-полуфабриката вырабатывают по технологии, которая включает следующие операции: подготовка сырья, получение пюре, смешивание его с лимонной кислотой, стерилизация пюре в потоке, концентрирование (выпаривание), подогрев пасты, фасование в крупную тару, укупоривание, стерилизация горячим днем, охлаждение. Массовая доля растворимых сухих веществ — 25 %. Соотношение массового и плодового пюре 1:1 обеспечивает хорошие органолептические качества, а низкое pH способствует мягким режимам стерилизации.

В Краснодарском производстве ВНИИКОПа была разработана томатно-яблочная паста с содержанием сухих веществ 25 и 30 %. Готовят ее из свежих томатов и яблок или из пюре-полуфабриката, заготовленных асептическим способом. Томатно-яблочная паста имеет хороший вкус и аромат томатов и яблок, что позволяет использовать ее в качестве начинки для выпечки.

Во ВНИИКТИ “Плодовим” (Харьков) разработаны технологии производства мягкого мороженого на основе яблочного пюре, а также вяленых яблок, которые могут быть использованы в качестве добавок в производстве патиссов и других продуктов.

Ассортимент пюреобразных консервов для детского питания в Украине следующий:
- яблочное пюре с добавлением сахара (от 4 до 18 %);
- яблочное пюре с добавлением одного-двух плодово-ягодных компонентов и от 7 до 11 % сахара (яблоко и слив, яблоко и черная смородина, яблоко и груша, яблоко и айва);
- яблочное пюре с курагой и смолой (яблоко и яблоко с курагой и смолой);
- яблочное пюре с курагой и смолой (яблоко и яблоко с курагой и смолой);
- яблочное пюре с курагой и смолой (яблоко и яблоко с курагой и смолой).

Оглушительно использование фруктового пюре — применение в качестве наполнителей и биологически активных добавок в производстве пищевых продуктов других отраслей — кондитерской, молочной, хлебопекарной, массовом питании.

ВНИИПом совместно с Институтом питания АМН России разработано на основе яблочного пюре хорошее по вкусу и привлекательное по внешнему виду, содержащее БАВ, десертные и сладкие блюда, такие как салат, мусс, крем и др., которые позволяют разнообразить меню.

Во ВНИИКТИ “Плодовим” разработана технология производства мягкого мороженого из яблочного пюре или из смеси яблочного пюре и ягод.

Из сказанного выше следует, что ассортимент пюреобразных консервов и пюреобразных полуфабрикатов в яблоке в Украине шире, чем в других странах. Содержание БАВ в них невелико из-за применения жестких технологических режимов переработки сырья. В связи с этим актуальным является такое направление:
- совершенствование существующих технологий и создание новых, позволяющих максимально сохранить витамины и другие, биологически активные и питательные вещества для сохранения ягод в яблочном пюре;
- разработка новых пюреобразных продуктов и полуфабрикатов из яблока с применением нетрадиционных источников БАВ (например, цветной пыльцы и ле-
к карстенного и промоароматического растительного сырья), потребление кото-
рых способствовало бы повышению общей сопротивляемости организма к раз-
рушительному действию повреждающих факторов окружающей среды.

Раздел 2.

ХАРАКТЕРИСТИКА КАЧЕСТВА ЦВЕТОЧНОЙ ПЫЛЬЦЫ (ПЧЕЛИНОЙ ОБНОЖКИ)

В программу подготовки научного обоснования разработки технологии ви-
таминных полусырокатов из цветочной пыльцы (пчелиной обноожки) и использо-
вания их в продуктах питания иммуностимулирующего и радиозащитного дейст-
вий входило исследование особенностей ее химического и морфологического со-
става.

В связи с этим качество цветочной пыльцы характеризовали по четырем
группам показателей:
- морфологическая характеристика (форма, размер клеток, распределение по раз-
мерам в различных образцах пыльцы);
- содержание биологически активных веществ: массовая доля витаминов (C, бета-
каротин, Е, В1, B3, PP), минеральных веществ (Ca, P, K, Mg, Na, S, Cu, Co, Mn,
Zn, Fe), фенольных соединений с P-витаминной активностью - общее соотно-
шение (по хлорогеновой кислоте), свободных кетонов (по д-кетоцину); суммы
флавоноидных гликозидов (по рутину);
- содержание питательных веществ: белков, свободных аминокислот, общих саха-
ров, моносахаридов (фруктозы и глюкозы) и балластных углеводов (общего пек-
тина, протопектину, растворимого пектину);
- физико-химические показатели (массовая доля влаги, кислотность, показатели,
пресумеименные ГОСТами).

В работе изучен также химический состав шротов из цветочной пыльцы
после водноспиртовой экстракции.

2.1. Морфологическая характеристика цветочной пыльцы

Объектом исследований была пыльца растений различных видов (плодовых
деревьев, вербы, луговых цветов, рапса, одуванчика, клема, дуба, полиэфира) с
различной формой и диаметром пыльцевых зерен от 10 до 90 мкм (табл. 2.1). Рас-
пределение по размерам пыльцевых зерен в образцах пыльцы показано на рис. 2.1,
его изучали при помощи электронного и оптического микроскопов.

Результаты сравнения разных видов пыльцы, представленные здесь свиде-
тельствуют о том, что исследованные зерна значительно отличались как по форме,
так и по размерам. Отличия отмечены также по размерам внутри одного и того же
вида. Наиболее однородностью размеров пыльцевых зерен наблюдалась у влажно-
вых деревьев (образец 2), луговых цветов (образец 3), рапса (образец 4) и у оду-
ванчика и клема (образец 5).

<table>
<thead>
<tr>
<th>№ образца</th>
<th>Вид пыльцы</th>
<th>Форма частич</th>
<th>Размер частич, мкм</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Верба</td>
<td>овальная, округлая</td>
<td>25...40</td>
</tr>
<tr>
<td>2</td>
<td>Плодовые деревья</td>
<td>овальная, округлая</td>
<td>10...40</td>
</tr>
<tr>
<td>3</td>
<td>Луговые цветы</td>
<td>то же</td>
<td>25...30</td>
</tr>
<tr>
<td>4</td>
<td>Рапса</td>
<td>то же</td>
<td>25...40</td>
</tr>
<tr>
<td>5</td>
<td>Одуванчика, клен, дуб</td>
<td>то же</td>
<td>25...45</td>
</tr>
<tr>
<td>6</td>
<td>Рапса</td>
<td>то же</td>
<td>25...35</td>
</tr>
<tr>
<td>7</td>
<td>Полиэфир</td>
<td>округлая, треугольная</td>
<td>10...40</td>
</tr>
<tr>
<td>8</td>
<td>То же</td>
<td>то же</td>
<td>15...50</td>
</tr>
<tr>
<td>9</td>
<td>То же</td>
<td>округлая с винами, округлая, гладкая, треугольная</td>
<td>25...90</td>
</tr>
<tr>
<td>10</td>
<td>То же</td>
<td>треугольная, округлая, па-локонидная</td>
<td>10...90</td>
</tr>
</tbody>
</table>

Очень однородный по размерам состав отмечался у пыльцевых зерен вербы
(образец 1), а также у полиэфирной пыльцы (образцы 7-10).
2.2. Химический состав цветочной пыльцы (пчелиной обножки)

В задачу настоящих исследований входило изучение химического состава, пищевой и биологической ценности цветочной пыльцы. Анализ химического состава необходим для составления сбалансированной, научно обоснованной рецептур фитоаром или других продуктов лечебно-профилактического действия. Кроме того, качество разработанных продуктов должно соответствовать требованиям внешнего рынка, то есть быть конкурентоспособным.

Контроль качества цветочной пыльцы осуществляли по следующим показателям: массовая доля витамина C и бета - каротина, витаминов E, B1, B2, PP, фенольных соединений с P-витаминной активностью, в том числе общее содержание фенольных соединений (по хлорогенной кислоте), сумма флавоноловых гликозидов (по рутину), свободных катехинов (по d-капсекцину), эфирных масел, минеральных веществ (K, Ca, Mg, P, Na, S, Cu, Co, Mn, Zn, Fe), белка, пектиновых веществ, сахаров, органических кислот, аминокислотный состав. Результаты исследований химического состава цветочной пыльцы представлены в табл. 2.1 - 2.4.

По химическому составу цветочная пыльца представляет полноценный натуральный продукт, сбалансированный по углеводам и белкам. Их соотношение составляет 1:3 (табл. 2.2). Пыльца содержит значительное количество сахара (от 55 до 60 %), который представлен, в основном, простыми и малоусваиваемыми сахарами (фруктозой и глюкозой), и белков (от 15 до 25 %). Из витаминов больше всего в пыльце содержится витамина C (от 36 до 110 мг на 100 г продукта), каротина (от 0,7 до 24 мг на 100 г продукта), витамина E (от 1,9 до 6,4 мг на 100 г продукта), а также витаминов B1, B2 и PP (табл. 2.3). Пыльца содержит значительное количество фенольных соединений с P-витаминной активностью (около 1,5-3,0 %), которые, в основном, представлены флавоновыми гликозидами (0,7-1,7 %) и хлорогенной кислотой. Кроме того, цветочная пыльца имеет богатый минеральный состав, представленный такими элементами, как Ca - 250...300 мг на 100 г продукта, P - 200..600 мг на 100 г продукта, K - 450...700 мг на 100 г продукта (табл. 2.4). Кроме перечисленных выше биологически активных и питательных веществ цветочная пыльца имеет богатый аминокислотный состав, представленный всеми незаменимыми аминокислотами и в значительном количестве (табл. 2.5). По аминокислотному составу белки пыльцы являются обычными растительными белками и близки к белкам гороха, фасоли, пшеницы, риса.

Таким образом, цветочная пыльца является натуральным витаминноносителем, сахаро- и белкосодержащим продуктом, который может быть использован в виде биодобавки в различные продукты питания повышенной пищевой и биологической ценности, а также профилактического действия.
Таблица 2.2. Содержание питательных веществ и балластных углеводов в цветочной пыльце (г на 100 г продукта)

<table>
<thead>
<tr>
<th>№ образца</th>
<th>Вид пыльцы</th>
<th>Массовая доля влаги, %</th>
<th>Массовая доля сахаров</th>
<th>Массовая доля белка</th>
<th>Массовая доля органических кислот</th>
<th>Массовая доля пектина</th>
<th>Массовая доля пектиновых веществ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>общий сахар</td>
<td>фруктоза</td>
<td>сахароза</td>
<td>общий пектин</td>
<td>ратционный пектин</td>
<td>прото пектин</td>
</tr>
<tr>
<td>1</td>
<td>Верба</td>
<td>8,1</td>
<td>58,0</td>
<td>51,7</td>
<td>5,9</td>
<td>21,1</td>
<td>2,0</td>
</tr>
<tr>
<td>2</td>
<td>Плодовые деревья</td>
<td>8,0</td>
<td>61,1</td>
<td>58,9</td>
<td>2,1</td>
<td>23,5</td>
<td>1,9</td>
</tr>
<tr>
<td>3</td>
<td>Луговые цветы</td>
<td>8,7</td>
<td>58,4</td>
<td>51,1</td>
<td>6,8</td>
<td>23,2</td>
<td>2,6</td>
</tr>
<tr>
<td>4</td>
<td>Рапс</td>
<td>7,0</td>
<td>60,5</td>
<td>41,3</td>
<td>18,3</td>
<td>22,9</td>
<td>1,6</td>
</tr>
<tr>
<td>5</td>
<td>Одуванчик, клен, дуб</td>
<td>9,6</td>
<td>57,0</td>
<td>46,5</td>
<td>10,0</td>
<td>21,5</td>
<td>1,8</td>
</tr>
<tr>
<td>6</td>
<td>Рапс</td>
<td>8,4</td>
<td>54,9</td>
<td>43,8</td>
<td>10,7</td>
<td>19,7</td>
<td>1,9</td>
</tr>
<tr>
<td>7</td>
<td>Полифлорная</td>
<td>6,0</td>
<td>58,7</td>
<td>45,8</td>
<td>12,3</td>
<td>23,8</td>
<td>1,6</td>
</tr>
<tr>
<td>8</td>
<td>То же</td>
<td>8,2</td>
<td>56,7</td>
<td>46,8</td>
<td>9,4</td>
<td>-</td>
<td>1,3</td>
</tr>
<tr>
<td>9</td>
<td>То же</td>
<td>6,7</td>
<td>56,6</td>
<td>47,3</td>
<td>8,8</td>
<td>15,6</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>То же</td>
<td>5,5</td>
<td>55,2</td>
<td>47,0</td>
<td>7,8</td>
<td>14,9</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Примечание. Каждая величина — среднее арифметическое не менее 3 - 5 измерений.

Таблица 2.3. Содержание витаминов, фенольных соединений и ароматических веществ в цветочной пыльце (мг на 100 г продукта)

<table>
<thead>
<tr>
<th>№ образца</th>
<th>Вид пыльцы</th>
<th>Массовая доля витаминов</th>
<th>Массовая доля фенольных соединений с Р-витаминной активностью</th>
<th>Массовая доля ароматических веществ (по числу ароматов)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>β-каротин</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Верба</td>
<td>110,6</td>
<td>0,7</td>
<td>4,1</td>
</tr>
<tr>
<td>2</td>
<td>Плодовые деревья</td>
<td>53,5</td>
<td>1,3</td>
<td>2,4</td>
</tr>
<tr>
<td>3</td>
<td>Луговые цветы</td>
<td>55,6</td>
<td>2,0</td>
<td>1,5</td>
</tr>
<tr>
<td>4</td>
<td>Рапс</td>
<td>77,2</td>
<td>0,7</td>
<td>6,1</td>
</tr>
<tr>
<td>5</td>
<td>Одуванчик, клен, дуб</td>
<td>39,5</td>
<td>0,9</td>
<td>3,8</td>
</tr>
<tr>
<td>6</td>
<td>Рапс</td>
<td>49,3</td>
<td>0,8</td>
<td>5,2</td>
</tr>
<tr>
<td>7</td>
<td>Полифлорная</td>
<td>80,1</td>
<td>2,0</td>
<td>2,9</td>
</tr>
<tr>
<td>8</td>
<td>То же</td>
<td>36,3</td>
<td>24,4</td>
<td>6,1</td>
</tr>
<tr>
<td>9</td>
<td>То же</td>
<td>49,8</td>
<td>0,9</td>
<td>2,4</td>
</tr>
<tr>
<td>10</td>
<td>То же</td>
<td>43,2</td>
<td>0,9</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Примечание. Каждая величина — среднее арифметическое не менее 3 - 5 измерений.
Таблица 2.4. Минеральный состав цветочной пыльцы (мг на 100 г продукта)

<table>
<thead>
<tr>
<th>№ образца</th>
<th>Вид пыльцы</th>
<th>Макроэлементы</th>
<th>Микроэлементы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>Вербаза</td>
<td>254,9</td>
<td>664,5</td>
</tr>
<tr>
<td>2</td>
<td>Плодовые деревья</td>
<td>255,8</td>
<td>515,3</td>
</tr>
<tr>
<td>3</td>
<td>Луговые цветы</td>
<td>238,6</td>
<td>506,5</td>
</tr>
<tr>
<td>4</td>
<td>Рапс</td>
<td>297,0</td>
<td>250,0</td>
</tr>
<tr>
<td>5</td>
<td>Одуванчик, клен, дуб</td>
<td>267,0</td>
<td>266,0</td>
</tr>
<tr>
<td>6</td>
<td>Рапс</td>
<td>297,0</td>
<td>250,0</td>
</tr>
<tr>
<td>7</td>
<td>Полифлорная</td>
<td>255,0</td>
<td>256,0</td>
</tr>
<tr>
<td>8</td>
<td>То же</td>
<td>297,0</td>
<td>190,0</td>
</tr>
<tr>
<td>9</td>
<td>То же</td>
<td>276,0</td>
<td>190,0</td>
</tr>
<tr>
<td>10</td>
<td>То же</td>
<td>297,0</td>
<td>190,0</td>
</tr>
</tbody>
</table>

Примечание. Каждая величина - среднее арифметическое не менее 3 - 5 измерений.

Таблица 2.5. Аминокислотный состав цветочной пыльцы (мг на 100 г продукта)

<table>
<thead>
<tr>
<th>№ образца</th>
<th>Вид пыльцы</th>
<th>Протеин</th>
<th>Лицин</th>
<th>Гистидин</th>
<th>Аргинин</th>
<th>Аспарагиновая кислота</th>
<th>Треонин</th>
<th>Серин</th>
<th>Глютаминовая кислота</th>
<th>Пролин</th>
<th>Глицин</th>
<th>Альанин</th>
<th>Валин</th>
<th>Метионин</th>
<th>Изолейцин</th>
<th>Лейцин</th>
<th>Тирозин</th>
<th>Фенилаланин</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Вербаза</td>
<td>21,1</td>
<td>1,05</td>
<td>0,45</td>
<td>1,69</td>
<td>1,98</td>
<td>0,75</td>
<td>0,74</td>
<td>2,06</td>
<td>0,52</td>
<td>0,36</td>
<td>0,99</td>
<td>0,82</td>
<td>0,47</td>
<td>0,54</td>
<td>1,07</td>
<td>0,87</td>
<td>0,95</td>
</tr>
<tr>
<td>2</td>
<td>Плодовые деревья</td>
<td>23,5</td>
<td>1,06</td>
<td>0,39</td>
<td>1,58</td>
<td>1,88</td>
<td>0,88</td>
<td>0,84</td>
<td>2,20</td>
<td>0,36</td>
<td>1,02</td>
<td>1,03</td>
<td>0,89</td>
<td>0,43</td>
<td>0,64</td>
<td>1,20</td>
<td>0,49</td>
<td>0,75</td>
</tr>
<tr>
<td>3</td>
<td>Луговые цветы</td>
<td>23,3</td>
<td>1,12</td>
<td>0,42</td>
<td>2,22</td>
<td>2,12</td>
<td>0,86</td>
<td>0,83</td>
<td>2,39</td>
<td>0,65</td>
<td>1,15</td>
<td>1,34</td>
<td>1,34</td>
<td>0,53</td>
<td>0,71</td>
<td>1,32</td>
<td>0,96</td>
<td>0,90</td>
</tr>
<tr>
<td>4</td>
<td>Рапс</td>
<td>22,9</td>
<td>1,05</td>
<td>0,40</td>
<td>0,86</td>
<td>1,99</td>
<td>1,20</td>
<td>0,88</td>
<td>1,86</td>
<td>0,55</td>
<td>0,85</td>
<td>0,95</td>
<td>1,07</td>
<td>0,35</td>
<td>0,63</td>
<td>1,26</td>
<td>0,63</td>
<td>1,08</td>
</tr>
<tr>
<td>5</td>
<td>Одуванчик, клен, дуб</td>
<td>21,5</td>
<td>1,31</td>
<td>0,40</td>
<td>1,28</td>
<td>2,49</td>
<td>1,72</td>
<td>1,08</td>
<td>2,71</td>
<td>0,63</td>
<td>1,21</td>
<td>1,22</td>
<td>1,25</td>
<td>0,36</td>
<td>0,90</td>
<td>1,53</td>
<td>0,79</td>
<td>0,92</td>
</tr>
<tr>
<td>6</td>
<td>Рапс</td>
<td>19,7</td>
<td>1,23</td>
<td>0,49</td>
<td>1,01</td>
<td>2,29</td>
<td>1,40</td>
<td>0,94</td>
<td>2,47</td>
<td>0,44</td>
<td>0,86</td>
<td>0,90</td>
<td>1,16</td>
<td>0,38</td>
<td>0,67</td>
<td>1,34</td>
<td>0,67</td>
<td>0,86</td>
</tr>
<tr>
<td>7</td>
<td>Полифлорная</td>
<td>23,8</td>
<td>0,94</td>
<td>0,41</td>
<td>0,91</td>
<td>2,08</td>
<td>1,15</td>
<td>0,86</td>
<td>2,13</td>
<td>0,46</td>
<td>0,97</td>
<td>0,98</td>
<td>1,14</td>
<td>0,37</td>
<td>0,91</td>
<td>1,44</td>
<td>0,55</td>
<td>0,47</td>
</tr>
<tr>
<td>8</td>
<td>То же</td>
<td>15,6</td>
<td>0,56</td>
<td>0,27</td>
<td>0,46</td>
<td>1,08</td>
<td>0,52</td>
<td>0,32</td>
<td>0,96</td>
<td>0,34</td>
<td>0,36</td>
<td>0,46</td>
<td>0,61</td>
<td>0,11</td>
<td>0,35</td>
<td>0,71</td>
<td>0,22</td>
<td>0,70</td>
</tr>
<tr>
<td>9</td>
<td>То же</td>
<td>14,9</td>
<td>0,56</td>
<td>0,44</td>
<td>0,56</td>
<td>0,62</td>
<td>0,84</td>
<td>0,56</td>
<td>1,49</td>
<td>0,51</td>
<td>0,58</td>
<td>0,63</td>
<td>0,98</td>
<td>0,27</td>
<td>0,60</td>
<td>0,60</td>
<td>0,74</td>
<td>0,81</td>
</tr>
</tbody>
</table>

Примечание. Каждая величина - среднее арифметическое не менее 3 - 5 измерений.
2.3. Исследование химического состава шротов (или выжимков) из цветочной пыльцы после экстракции

При переработке гранул цветочной пыльцы при помощи водно - спиртовой или водной экстракции на предприятиях безалкогольной и фармацевтической отраслей промышленности остаются шроты из нее (или выжимки), которые идут на корм скоту или на уборение.

В настоящей работе изучен химический состав шротов из пыльцы, полученных после водно-спиртовой экстракции в промышленных условиях в цехе сухих безалкогольных напитков межхозяйственного предприятия «Пилтене» (Латвия).

Контроль качества шротов из цветочной пыльцы осуществляли по следующим показателям: содержание питательных веществ - белка, сахаров, органических кислот, витаминов (C, бета - каротина, E, B₁, B₂, PP), фенольных соединений с Р-витаминной активностью, в том числе общее содержание фенольных соединений (по хлорогеновой кислоте), сумма флавоноловых гликозидов (по рутину), свободные катехины (по а-катехину), ароматические вещества (по числу ароматов), минеральные вещества (K, Na, Ca, Mg, P, Fe, S, Cu, Co, Mn, Zn), пектиновые вещества. Результаты исследования химического состава шротов цветочной пыльцы представлены в табл. 2.6-2.8.

Установлено, что выжимки из цветочной пыльцы содержат значительное количество белка - до 35 %, сахаров - от 15 до 18 %, пектиновых веществ - от 2,5 до 4,5 %, органических кислот - от 1 до 2 %. В шроте пыльцы содержится также значительное количество витаминов. Так, например, массовая доля витамина C в шротах составляет половину суточной потребности человека по формуле сбалансированного питания - 23,9...28,5 мг/100 г продукта, β-каротина - от 0,9 до 12,2 мг/100 г продукта. Массовая доля фенольных соединений составляла около 1,2...1,7 %. В шротах содержится также большое количество минеральных веществ. Особенно много калия (330...520 мг/100 г), кальция (2123...297 мг/100 г), фосфора (190...350 мг/100 г).

Таким образом, шроты из цветочной пыльцы являются балочной добавкой с высоким содержанием биологически активных веществ. Шрот из цветочной пыльцы можно перерабатывать в порошок по технологии, аналогичной получению порошка из цветочной пыльцы при помощи криогенного измельчения.
Таблица 2.7. Содержание витаминов, фенольных соединений и ароматических веществ в выжимках из цветочной пыльцы (мг на 100 г продукта)

<table>
<thead>
<tr>
<th>Шрот из цветочной пыльцы</th>
<th>Витамины</th>
<th>Фенольные соединения с P-витаминной активностью</th>
<th>Ароматические вещества (по числу аромата)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>β-каротин</td>
<td>E</td>
</tr>
<tr>
<td>Полифлорной</td>
<td>28,5</td>
<td>12,2</td>
<td>2,9</td>
</tr>
<tr>
<td>Плодовых деревьев</td>
<td>25,4</td>
<td>5,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Полифлорной</td>
<td>24,6</td>
<td>1,1</td>
<td>1,3</td>
</tr>
<tr>
<td>Полифлорной</td>
<td>27,3</td>
<td>0,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Рапса</td>
<td>23,9</td>
<td>0,5</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Таблица 2.8. - Минеральный состав шротов из цветочной пыльцы (мг на 100 г продукта)

<table>
<thead>
<tr>
<th>Шрот из цветочной пыльцы</th>
<th>Макроэлементы</th>
<th>Микроэлементы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
<td>P</td>
</tr>
<tr>
<td>Полифлорной</td>
<td>276,0</td>
<td>240,0</td>
</tr>
<tr>
<td>Плодовых деревьев</td>
<td>293,1</td>
<td>190,2</td>
</tr>
<tr>
<td>Полифлорной</td>
<td>244,5</td>
<td>195,8</td>
</tr>
<tr>
<td>Полифлорной</td>
<td>213,8</td>
<td>350,2</td>
</tr>
<tr>
<td>Рапса</td>
<td>297,1</td>
<td>294,2</td>
</tr>
</tbody>
</table>
Раздел 3.

НАУЧНЫЕ ОСНОВЫ НОВОЙ ПРОГРЕССИВНОЙ ТЕХНОЛОГИИ БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВОК ИЗ ЦВЕТОЧНОЙ ПЫЛЬЦЫ

В данном разделе приведены результаты биохимических исследований, проведенных с использованием электронной микроскопии, являющихся научной основой при создании безотходной технологии получения витаминных мелкодисперсных порошков. БАВ порошкообразных полуфабрикатов высокой степени готовности из цветочной пыльцы (интеллигентных). Особенности новой технологии - применение жидкого азота в качестве инертной среды и низких температур при измельчении цветочной пыльцы.

Патентно-информационные исследования показали, что имеющиеся в мировой практике технологии не позволяют разрушить внешнюю оболочку пыльцевых зерен и получить из гранулы пыльцы порошок, так как он быстро комкуется и превращается в конфетную массу. Это связано с тем, что пыльца содержит значительное количество сахара (15-60%) в аморфном состоянии, обладающих высокой связывающей способностью в отношении воды. Поэтому общепринятые продукты из цветочной пыльцы являются гранулы, насторожи, экстракты. При этом новые БАВ и питательные вещества пыльцы используются примерно наполовину. Выжимками из нее (или шрот) входят в отходы или на корм скоту, что нерентабельно. Проведенные нами исследования их химического состава показали, что в этих отходах содержится примерно еще столько же БАВ и питательных веществ, сколько было извлечено при экстракции (см. раздел 2). Таким образом, разрушение пыльцевых зерен позволяло бы более полно использовать содержащиеся в пыльце БАВ. Получение из нее мелкодисперсного некоммуцирующегося порошка расширило бы сферу ее применения в качестве биодобавки в различные пищевые продукты массового и лечебно-профилактического питания и позволило бы полностью использовать ценный продукт.

Патентно-информационные исследования показали, что как за рубежом, так и в нашей стране жидкого азот не применяют при измельчении цветочной пыльцы. Применение жидкого азота при замораживании и измельчении цветочной пыльцы определяет особенности биохимических и технологических процессов, специфика которых до настоящей работы не изучена. Отсутствует также рациональная технология его использования при переработке цветодной пыльцы.

Описанные исследования направлены на разработку научно обоснованной технологии некоммуцирующего порошка из цветочной пыльцы и разрушения экзиновых пыльцевых зерен, отработку оптимальных технологических режимов получения мелкодисперсных порошков и последующее внедрение данной технологии.

3.1. Исследование влияния криогенного измельчения на биохимические характеристики цветочной пыльцы

Впервые в международной практике удалось не только разрушить экзину клеток (зерен) цветочной пыльцы, но и получить из нее мелкодисперсное некокоммуцирующее порошок, улучшенные по сравнению с исходной пыльцой свойства. Порошки из цветочной пыльцы могут быть использованы в качестве концентрированных биодобавок в сухие напитки, кондитерские изделия и другие продукты питания. Как основа для сухих напитков порошки из цветочной пыльцы должны отвечать следующим требованиям: легко увлажняться, быстро растворяться в холодной питьевой воде, восстановленные из порошкообразных смесей морозовские напитки не должны содержать ощутимых при употреблении частиц. Экспериментальные исследования и заключения дегустационных комиссий показали, что оптимальный размер частиц порошков должен быть 5...20 мкм.

При разработке криогенной технологии (КТ) порошка была использована пыльца различных видов растений (из подовых деревьев, вербы, луговых цветов, риса, овощей), имеющих абаковуру и диаметром (от 10 до 90 мкм). Были подобраны температурные режимы ее измельчения таким образом, чтобы максимально сохранить качество пыльцы при минимальном расходе азота (1...2,5 кг на 1 кг порошка), а также подобраны режимы сушки, чтобы получить некоммуцирующий порошок.

Измельчение гранул цветочной пыльцы производили на шаровой (фарфоровой) или вибрационной - шаровой мельнице в две стадии. На первой стадии осуществляли разрушение гранул цветочной пыльцы до размера пыльцевых зерен; на второй - разрушение самих пыльцевых зерен с помощью ударно-вращающего механизма.

В исходной пыльце и порошках из нее контролировали массовую долю витамина C, ароматических веществ, поскольку именно эти соединения при переработке растительного сырья наименее устойчивы и уменьшение их содержания
может служить одним из критериев степени изменения качества растительного сырья. Кроме того, контролировали массовую долю ароматических веществ (по числу ароматов), свободных аминоциклот и простых пептидов, органических кислот, экстрактивность, а также расход жидкого азота, выбор упаковки и режим хранения.

Получены принципиально новые аналитико-экспериментальные данные, определяющие витаминную ценность и содержание других БАВ в порошке из цветочной пыльцы, измельченной с применением жидкого азота.

Установлено, что начиная с температуры -10 °C происходит увеличение концентрации низкомолекулярных биологически активных и питательных веществ, в результате чего получается более обогащенный, по сравнению с исходным сырым, продукт. Так, например, выход витамина С составляет 112…124 %, ароматических веществ - 176…243 %, органических кислот - 102…107 % (табл. 3.1-3.2 и рис. 3.1-3.2).

Установлено, что рациональной температурой криогенного измельчения пыльцы является температура минус 10…15 °C, при которой на измельчение 1 кг пыльцы расходуется 1…2,5 кг жидкого азота. Повышение извлечение БАВ и питательных веществ связано, по-видимому, с разрушением или повреждением клеток и мембран цветочной пыльцы, с низкой температурой и химической инертностью среды. Кроме того, повышенное извлечение низкомолекулярных БАВ и питательных веществ можно объяснить на примере аскорбиновой кислоты. В растительном сыре аскорбиновая кислота находится как в свободном, так и в связанном с биополимерами (например, белком, полисахаридами, крахмалом, ферментами и т.п.) состоянии. Аскорбиновая кислота может быть, связана с биополимерами при помощи гидрофильных групп (SH, COOH, OOH, H2, SOH) биополимеров (водородных связей) и при помощи гидрофобных групп биополимеров (например, углеводород, гетероциклы), т.е. при помощи индукционного взаимодействия. Существующие методики определения содержания аскорбиновой кислоты в растительном сыре позволяют определить только аскорбиновую кислоту, которая находится в свободном состоянии.

При криогенном измельчении происходит деградация связей между аскорбиновой кислотой и биополимерами, в результате чего происходит отщепление низкомолекулярного соединения аскорбиновой кислоты, которая определяется химическими методами. Следовательно, количество свободной аскорбиновой кислоты увеличивается. Происходит эффект повышенного извлечения свободной аскорбиновой кислоты при криогенном измельчении цветочной пыльцы. Деградация связей происходит в наиболее лабильных звеньях биополимеров, на которых в первую очередь возникают критические напряжения при измельчении. Аналогичный механизм увеличения концентрации ароматических веществ и других.

Степень повышения выхода БАВ при измельчении цветочной пыльцы при криогенном измельчении с применением жидкого азота не одинакова для различных видов цветочной пыльцы и зависит от ее вида, химического состава, локализации БАВ, степени и характера разрушения экзина, мембран, органелл.

Таблица 3.1. Влияние температуры при измельчении цветочной пыльцы с применением жидкого азота на сохранение БАВ и питательных веществ

<table>
<thead>
<tr>
<th>Продукт</th>
<th>Температура измельчения, °C</th>
<th>Витамин С</th>
<th>Ароматические вещества (по числу ароматов)</th>
<th>Аминный азот</th>
<th>Экстрактивность</th>
</tr>
</thead>
<tbody>
<tr>
<td>Начальный продукт</td>
<td>-20</td>
<td>80,1</td>
<td>100,0</td>
<td>8,5</td>
<td>100,0</td>
</tr>
<tr>
<td>Порошок</td>
<td>-20</td>
<td>52,3</td>
<td>65,3</td>
<td>5,5</td>
<td>64,7</td>
</tr>
<tr>
<td>Порошок</td>
<td>0</td>
<td>55,1</td>
<td>68,8</td>
<td>5,8</td>
<td>68,3</td>
</tr>
<tr>
<td>Порошок</td>
<td>-10</td>
<td>89,9</td>
<td>112,2</td>
<td>15,0</td>
<td>176,5</td>
</tr>
<tr>
<td>Порошок</td>
<td>-15</td>
<td>99,6</td>
<td>124,3</td>
<td>19,5</td>
<td>229,4</td>
</tr>
<tr>
<td>Порошок</td>
<td>-20</td>
<td>99,2</td>
<td>123,8</td>
<td>15,4</td>
<td>181,2</td>
</tr>
<tr>
<td>Порошок</td>
<td>-40</td>
<td>98,1</td>
<td>122,5</td>
<td>20,7</td>
<td>243,5</td>
</tr>
<tr>
<td>Порошок</td>
<td>-50</td>
<td>99,4</td>
<td>124,1</td>
<td>19,5</td>
<td>229,4</td>
</tr>
</tbody>
</table>
Рис. 3.1. Зависимость сохранности и выхода биологически активных веществ при получении порошков из цветочной пыльцы от температуры измельчения: 1) исходные зерна цветочной пыльцы; порошки из цветочной пыльцы, измельченной при различных температурах, °С: 2) 20; 3) 0; 4) -10; 5) -15; 6) -20; 7) -40; 8) -50

Таблица 3.2. Влияние криогенного измельчения с использованием жидкого азота на выход биологически активных веществ из порошка цветочной пыльцы

<table>
<thead>
<tr>
<th>Номер серии опыта и продукта</th>
<th>Витамины С</th>
<th>Число ароматов</th>
<th>Аммонийный азот</th>
<th>Органические кислоты (по аммонийной кислоте)</th>
<th>Экстрактивность</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/100 г продукта к СВ</td>
<td>выход к исходу %</td>
<td>mg/100 г продукта к СВ</td>
<td>выход к исходу %</td>
<td>mg/100 г продукта к СВ</td>
</tr>
<tr>
<td>1. Пыльца</td>
<td>80,1</td>
<td>100,0</td>
<td>8,5</td>
<td>100,0</td>
<td>665,0</td>
</tr>
<tr>
<td>Порошок</td>
<td>89,9</td>
<td>112,2</td>
<td>15,9</td>
<td>175,5</td>
<td>1272,0</td>
</tr>
<tr>
<td>2. Пыльца</td>
<td>80,1</td>
<td>100,0</td>
<td>8,5</td>
<td>100,0</td>
<td>665,0</td>
</tr>
<tr>
<td>Порошок</td>
<td>82,4</td>
<td>102,9</td>
<td>19,5</td>
<td>229,4</td>
<td>1353,6</td>
</tr>
<tr>
<td>3. Пыльца</td>
<td>80,1</td>
<td>100,0</td>
<td>8,5</td>
<td>100,0</td>
<td>665,0</td>
</tr>
<tr>
<td>Порошок</td>
<td>81,9</td>
<td>102,3</td>
<td>14,6</td>
<td>171,8</td>
<td>1429,5</td>
</tr>
<tr>
<td>4. Пыльца</td>
<td>80,1</td>
<td>100,0</td>
<td>8,5</td>
<td>100,0</td>
<td>665,0</td>
</tr>
<tr>
<td>Порошок</td>
<td>83,2</td>
<td>102,9</td>
<td>59,4</td>
<td>181,2</td>
<td>880,1</td>
</tr>
<tr>
<td>5. Пыльца</td>
<td>80,1</td>
<td>100,0</td>
<td>8,5</td>
<td>100,0</td>
<td>665,0</td>
</tr>
<tr>
<td>Порошок</td>
<td>99,6</td>
<td>124,3</td>
<td>20,7</td>
<td>243,5</td>
<td>1737,8</td>
</tr>
</tbody>
</table>

Вибрационная мельница, размер зерен 10...40 мкм
3.2. Изучение при помощи электронной сканирующей микроскопии характера разрушения клеток цветочной пыльцы при измельчении с применением жидкого азота

По данным института АПИМОНДИИ, экзина цветочной пыльцы не разрушается при механическом воздействии, при кипячении в кислотах и основаниях, устойчива к воздействию желудочного сока. При разработке криогенной технологии порошка из цветочной пыльцы параллельно с контролем ее биохимических характеристик проводили изучение разрушения экзины пыльцевых зерен различной формы, вида и диаметра при помощи электронной сканирующей микроскопии.

На рис. 3.3 приведена динамика разрушения клеток цветочной пыльцы в зависимости от ее размера и времени измельчения. Показано, что в процессе измельчения пыльцевые зерна в форме треугольника, эллипса или палочковидные и размером 60-70 мкм разрушились быстрее, чем пыльцевые зерна овальной и
сферической форм (наиболее часто встречающиеся) и размером 25...30 мкм. Доля разрушенных зерен к моменту получения мелкоалеперсного порошка с размером 5...20 мкм составила, соответственно, 90...100 и 70...75 %.

На рис. 3.3..3.9 приведена серия фотографий, на которых представлены наиболее часто встречающиеся типы пыльцевых зерен (или клеток): сферические, эллипсоидальные, треугольные, шишковидные - и характер их повреждения или разрушения при измельчении в криомельнице. Последнее происходит при помощи ударно-изгибающего механизма.

Рис. 3.3. Разрушение клеток цветочной пыльцы с различным диаметром в зависимости от продолжительности криогенного измельчения:
1 - диаметр зерен пыльцы 25...30 мкм; 2 - диаметр зерен пыльцы 60..70 мкм; 1 - исходная пыльца; 2 - время измельчения 30 мин; 3 - время измельчения 40 мин

Оказывает на себя внимание различная степень разрушения внешних клеточных оболочек: разрушение эпидемии со слущиванием части клеточной оболочки, раскол эпидемии с возможным разрушением или деформацией интиты, существенная деформация клетки как целого и раскальвание части наружной мембраны.

На этих рисунках отчетливо видна различная степень повреждения пыльцы - от остаточной деформации внешней мембраны до полной фрагментации клеток. Однако необходимо подчеркнуть, что под повреждением клеток пыльцы следует понимать не только такую явную проявления, как деформация и разрушение мембраны, но также нарушение микроструктуры и образование пор в эпидемии и интиты. Если через разломы мембран БАВ, клетки становятся непосредственно доступны растворителю, то через микропоры они могут достаточно быстро

Рис.3.4. Электронограмма разрушения эпидемии и интиты клеток сферической формы цветочной пыльцы в результате криогенного измельчения (х 1000): а - исходные зерна с диаметром 25...30 мкм; б - с разрушенной эпидемией

48

49
Рис. 3.5. Электронограмма разрушения эпидемии и нативы клеток цветочной пыльцы эллипсоидальной формы в результате криогенного измельчения (х 1000): а - исходные зерна пыльцы диаметром 25...30 мкм; б - с разрушенной эпидемией

Рис. 3.6. Электронограмма разрушения эпидемии и нативы клеток цветочной пыльцы в результате криогенного измельчения (х 1000): а - исходные зерна пыльцы диаметром 25...40 мкм; б - с разрушенной эпидемией
Рис. 3.7. Электронограмма разрушения экзины и интиты клеток цветочной пыльцы различной формы в результате криогенного измельчения (х 1000): а - исходные зерна пыльцы диаметром 25...40 мкм; б - с разрушенной экзиной

Рис. 3.8. Электронограмма разрушения экзины и интиты клеток цветочной пыльцы различной формы в результате криогенного измельчения (х 200): а - исходные зерна пыльцы диаметром 25...90 мкм; б - с разрушенной экзиной
фильтроваться, что может быть особенно существенно в случае ферментной экстракции.

Характер разрушения пыльцы при измельчении в криомельнице, как и следовало ожидать, зависит от степени разрушения клеток под воздействием рабочих органов мельницы, от места приложения разрушающего воздействия, от структуры клетки и ее локальной прочности и химического состава. Сложность механизма разрушения клеток пыльцы рабочими органами криомельницы заключается в том, что рассматриваем приходится гетерогенные микроскопические объекты, имеюще различные форму, состав и внутреннюю структуру.

Таким образом, криогенное измельчение является уникальным методом переработки цветочной пыльцы, позволяющим не только получать мелкодисперсный порошок, но и существенно увеличить выход из нее БАВ за счет разрушения экизии и получить более обогащенный продукт. Мелкодисперсность порошка цветной пыльцы позволяет существенно расширить сферу ее применения в качестве лечебно-профилактической биологически в различные продукты питания.

3.3. Разработка технологии витаминных мелкодисперсных порошкообразных полуфабрикатов из цветочной пыльцы с применением жидкого азота

В задачу настоящих исследований входила разработка технологии мелкодисперсного некомкующегося порошка - полуфабриката БАВ, из цветочной пыльцы с применением жидкого азота, отработка рациональных технологических режимов с последующим внедрением данной технологии.

К настоящему времени предложена оригинальная технологическая схема и комплекс оборудования, реализующие возможности криогенной технологии мелкодисперсного некомкующегося порошка из цветочной пыльцы.

Технологическая схема представлена на рис. 3.10 и 3.11. Разрабатываемая технология переработки цветочной пыльцы состоит из следующих основных этапов: сушка гранулы, инспекция, охлаждение, криогенное измельчение, отцепление, сушка порошка и фасовка в герметическую упаковку. Предлагаемая криогенная технология (KT) позволяет разрушить пыльцевые зерна, существенно увеличить выход БАВ из них и получить мелкодисперсные некомкующиеся витаминные порошки, способные длительное время находиться в порошкообразном состоянии.
Технологический процесс получения порошка из цветочной пыльцы по КТ заключается в следующем: гранулы цветочной пыльцы после инспекции и сушки поступают в охладитель, в котором охлаждаются парами жидкого азота до температуры минус 10...15 °C, затем поступают в криогенную мельницу, где и подвергаются измельчению. В процессе измельчения проводится отбор проб для экспресс-анализа (определение массовой доли влажи, витамина С, ароматических веществ, а также гранулометрического состава). При достижении необходимой дисперсности выгрузка порошка из пыльцы осуществляется в сборники, где происходит отвещение порошка до комнатной температуры (+20...22°C). Затем производится его сушка при температуре +45...50 °C, например, в сушилькеimate 100 в виброцилиндрическом слое, либо в вакуумной или сублимационной. После подготовки порошок упаковывают в герметическую тару.

Производство мелкодисперсных порошков на технологической линии криогенного измельчения является экологически чистым благодаря применению в качестве хладагента жидкого азота.

В настоящее время проведены производственные испытания криогенного измельчения цветочной пыльцы на оборудовании в НПО «ФИПАР» (Харьков). Разработан и изготовлен криогенный измельчитель непрерывного действия для измельчения цветочной пыльцы производительностью 50 кг/час для межколхозного предприятия «Пищевая» (Латвия) совместно со специалистами НИИФ «КРНС» и ФТИП НАН Украины. Расход жидкого азота 1,5...2,5 кг на 1 кг го-
3.4. Биохимическая и микробиологическая характеристика витаминных порошкообразных полуфабрикатов из цветочной пыльцы в процессе хранения

Изучено качество витаминных порошкообразных полуфабрикатов из цветочной пыльцы в процессе хранения в течение 1-3 лет. Полуфабрикаты хранили в герметичной упаковке при комнатной температуре в стеклянных банках в затемненном помещении.

Известно, что уменьшение содержания витамина С и бета-каротина в процессе хранения растительного сырья служит одним из основных критериев степени изменения качества продукта. Поэтому в процессе хранения порошкообразных полуфабрикатов из цветочной пыльцы контролировали массовую долю аскорбиновой кислоты, β-каротина, а также редуцирующих сахаров, органических кислот и общую обсемененность микроорганизмами (табл. 3.3).

Установлено, что качество криопорошков из цветочной пыльцы в герметичной упаковке в течение 1-3 лет практически не менялось. Массовая доля аскорбиновой кислоты, β-каротина, общего сахара, органических кислот, а также их обсемененность микроорганизмами соответствовали их содержанию в исходных порошках.

Витаминные порошки из цветочной пыльцы - полуфабрикаты высокой степени готовности полифункционального назначения БАД, целесообразно использовать в качестве биодобавки в различные продукты массового и профилактического питания: в кондитерские изделия (десерты, желе, мороженое, кремы, начинки для конфет, вафель, печенья, мерингов, зефир, лукум и др.), безалкогольную продукцию (соки с мякотью, соки-нектары, коктейли, фитоиспирты), молочные изделия (творожные массы, кефир, йогурт, простокваша, сыры, взвитые
сливки, коктейли и др.), хлебобулочные изделия (булочки, батоны, пирожки, блины, хлеб, оладьи, зарейники). Это целесообразно как в условиях централизованного производства, так и в условиях массового питания, а также в домашнем приготовлении.

Патентно-информационный поиск и анализ проблем, а также результаты экспериментов, проведенных авторами работы, по разработке научно обоснованной технологии измельчения цветочной пыльцы с применением жидкого азота и получению из нее мелкодисперсных порошков с разрушением пыльцевых зерен подтвердили перспективность и актуальность этого направления и позволили сделать следующие выводы.

1. Научно обоснована безотходная технология получения витаминных порошкообразных фитодобавок из цветочной пыльцы с применением жидкого азота, позволяющая полностью сохранить не только все витамины и другие БАВ, но и получить более биологически обогащенный конечный продукт. Установлены основные закономерности на субклеточном и молекулярном уровне криогенного измельчения цветочной пыльцы с минимальным расходом жидкого азота, позволяющего экстрагировать все витамины и другие БАВ из исходной пыльцы более полно, чем это возможно при существующих методах экстракции. Практическая реализация найденного механизма криогенного измельчения позволяет разработать технологию криогенного порошка цветочной пыльцы - «Мелкодисперсный полуфабрикат из цветочной пыльцы» и на его основе фитодраже лечебно-профилактического действия «Витаминка» и витаминизированные полуфабрикаты «Медовку» и «Витаминка».

2. Впервые в мировой практике удалось разрушить клеточную оболочку пыльцевого зерна. Изучение разрушения пыльцевых зерен при криогенном измельчении методом сканирующей электронной микроскопии показало, что степень повреждения и разрушения клеток под воздействием рабочих органов криомельницы зависит от сини, разрушающей структуры клеток (имеющих различную форму, химический состав, внутреннюю структуру), ее локальной прочности, температурного режима, конструкции рабочих органов криомельницы. Установлено, что при помощи криогенном измельчении разрушается от 70 до 100% пыльцевых зерен (в зависимости от их формы, размера и химического состава). Разрушение клеток при криогенном измельчении происходит за счет ударно-ионирующего механизма.

3. Установлено, что при криогенном измельчении цветочной пыльцы при температуре минус 10°С и ниже не только сохраняются все витамины, но и получается более биологически обогащенный конечный продукт с улучшенными

по сравнению с исходным сырьем свойствами. Так, например, выход витамина С составляет 112…124%, ароматических веществ 170…243%, свободных аминокислот 130…261%, экстрактивных веществ 102…107%, органических кислот 102…107%. Повышенный выход витамина С, ароматических веществ связан с сущестенным разрушением клеток и мембран цветочного пыльца, с низкой температурой и химической инертностью среды, предотвращающими окисление и разрушение витаминов и летучих ароматических веществ, и разрушением комплексов межмолекулярных взаимодействий (биополимеры - аскорбиновая кислота и биополимеры - ароматические соединения и отцеплением низкомолекулярных соединений - аскорбиновой кислоты и ароматических соединений). Разрыв происходит в наиболее лабильных звеньях - водородных и гидрофобных связях, на которых в первую очередь возникают критические напряжения, вызывающие механорезонанс. Повышенные выход свободных аминокислот свидетельствуют о том, что в результате механического разрушения таких лабильных соединений, как белки, происходит отцепление таких низкомолекулярных соединений, как аминоциклоты.

4. Мелкодисперсность криопорошков из цветочной пыльцы, достигаемая благодаря криогенному измельчению, возрастает ее биологической активности открывают возможность расширения сферы применения пыльцы в качестве биодобавок в продукции массового питания, а также в диетическом и лечебном питании.

5. Новая технология криогенного измельчения цветочной пыльцы внедрена в международном предприятии «Piltene» (Латвия), изготовлены криомельницы непрерывного действия (производительностью 50 кг/ч), проведены их испытания, выпущена опытная партия.

Производство порошков из цветочной пыльцы и выживок из нее по предлагаемой технологии и использование их в качестве биодобавок в продукты питания может внести существенный вклад в профилактику различных заболеваний, в том числе для профессиональных групп повышенного риска (контингента людей, работающих в атомной, химической, металлургической отраслях промышленности и т.д.), а также для лиц, подвергающихся радиационному воздействию или находящихся в зонах экологически неблагополучных.
РАЗРАБОТКА НОВЫХ ТЕХНОЛОГИЙ ПАСТООБРАЗНЫХ ФИТОДОБАВОК НА ПЛОДОВОЙ ОСНОВЕ И ФИТОДРАЖЕ С ИСПОЛЬЗОВАНИЕМ ЦВЕТОЧНОЙ ПЫЛЬЦЫ

Теоретически обоснованы, экспериментально разработаны и внедрены в промышленность ряд новых технологий пищевых фитодобавок и продуктов профилактического действия на основе цветочной пыльцы в виде пастообразных фитоконцентратов и фитодраже:
- витаминизированные пастообразные фитоконцентраты «Витаминка (цветочная)», «Медок», «Медок (оригинальный)», в состав которых входят витаминный порошок из цветочной пыльцы, полученный по криогенной технологии, экстракты - антиоксиданты из нетрадиционного лекарственного и природоведческого растительного сырья, аскорбированная кислота и, в качестве основы, яблочное пюре и другие компоненты;
- фитодраже иммуномодулирующего и радиозащитного действия «Витаминка», «Витаминка с изюмом», «Витаминка с архисом», в состав которых входят витаминный порошок из цветочной пыльцы, экстракты из НЛПАРС, аскорбированная кислота и т.п.

Пулафабрикаты - фитоконцентраты «Витаминка», «Витаминка (цветочная)», «Медок», «Медок (оригинальный)», представляющие собой консервированные полутуфтюкгаты высокой степени готовности полифункционального назначения, предназначены для использования в качестве пищевой добавки при изготовлении продуктов питания в различных отраслях пищевой промышленности (кондитерской, молочной, безалкогольной, пищеконцентратных и других), в индивидуальном и массовом питании. Разработаны витаминизированные пастообразные фитоконцентраты, по заявленной специалистов-медиков, обладают профилактическим действием (иммуномодулирующим и радиозащитным).

От традиционных технологий производства пастообразных полуфабрикатов новая отличается использованием нетрадиционных источников ИАП - порошка из цветочной пыльцы, полученного по криогенной технологии, экстрактов-антioxidантов из НЛПАРС, а также витаминизацией аскорбированной кислотой. В качестве основы при изготовлении новых фитоконцентратов использовали яблочное пюре. Массовая доля сухих веществ в новых пастообразных концентрах составляла 65 %. Технология производства новых витаминизированных пастообразных полуфабрикатов «Витаминка» и «Медок» заключается в параллельном изготовлении яблочного пюре, 40 %-й водно-спиртовых экстрактов-антioxidантов из НЛПАРС (календулы, мелиссы, кориандра, чебреца), изготовленных традиционным настойным способом при помощи 2-ступенчатой экстракции, криогенном изменении цветочного пюре и приготовлении пастообразных полуфабрикатов при щадящих режимах с введением вкусо-ароматических добавок и обогащенных аскорбированной кислотой. Экстракты из НЛПАРС введены для придания пастообразным пищевым фитодобавкам антиоксидантных свойств и оригинальных вкуса и аромата.

При разработке рецептуры и подборе химического состава пастообразных фитоконцентратов «Медок» и «Витаминка» руководствовались рекомендациями Института питания АМН СССР и Всесоюзного онкоконцентра АМН СССР. Так, для профилактики онкозаболеваний, а также профилактики контингента лиц, находящихся в зонах с повышенной радиацией, необходимо употреблять в день от 5 до 8 мг β-каротина, 70...150 мг витамина С, 2...2.5 г пектинов, 20...25 г натурального или мыла тишина.

При разработке составов пастообразных фитоконцентратов исходили из содержания в 40 г смеси (еда порция для изготовления пшеницы, кокоса и т.п.) одной соевой нормы для человека аскорбированной кислотой и β-каротина. Крио- порошок из цветочной пыльцы вносили в количестве от 2 до 3 %, экстракты - в количестве 0,06 % на сухое вещество.

Пастообразные фитоконцентраты «Витаминка» и «Медок» отличаются различным количеством пюре и входящими в них экстрактами из НЛПАРС. В состав «Медок» введен также натуральный мед в количестве 3 %.

Технологические схемы производства витаминизированных пастообразных фитоконцентратов «Витаминка», «Витаминка (цветочная)», «Медок», «Медок (оригинальный)» приведены на рис. 4.1 - 4.2.

Ниже приводятся характеристики пастообразных фитоконцентратов.

Витаминизированный пастообразный фитоконцентрат «Витаминка» представляет собой однородную пастообразную массу, в состав которой входит яблочное пюре, сахар-песок, пыльца цветочная (обножка), яблочная кислота, аскорбиновая кислота, сорбиновая кислота, яблочно-спиртовые экстракты корианда, мелиссы, пищевые эссенции.

Витаминизированный пастообразный фитоконцентрат «Витаминка (цветочная)» дополнительно содержит β-каротин (мастный).
Витаминизированный пастообразный фитоконцентрат «Медок» представляет собой однородную пастообразную массу, в состав которой входят яблочное яблоков сахар-песок, пыльца цветочная (обжига), мед натуральный, лимонная кислота, аскорбиновая кислота, кориандр и черешня, пищевая эссенция. «Медок (оригинальный)» дополнительно содержит еще β-каротин.

Производство перечисленных фитоконцентратов включает следующие основные технологические этапы: доставка и приемка сырых, инспекция яблок; мойка яблок; вторичная инспекция; резка яблок; блаширование до полутонкости; протирание размеченных яблок; подготовка сахар-песка и лимонной кислоты; измельчение цветочной пыльцы (обжигая); приготовление продукта; фасовка; упаковка; маркировка; хранение.

Для производства витаминизированных пастообразных фитоконцентратов используют яблоки 1-й, 2-й и 3-го сортов свежие, цвелие, без постороннего запаха, пшеницы или гнили, соответствующие требованиям действующей технической документации. Поступающие на переработку яблоки моют в двух последовательно установленных моющих машинах. На мойку подается вода, охлажденная до температуры 130...150 °C. Мелкие яблоки используют целиком, крупные резать на 2...3 части, а затем пропускают через дробилку. Перед протиранием яблоки размачивают в паровых аппаратах при температуре 100 °C в течение 10...15 минут, либо пропускают через дробилку. Перед протиранием яблоки размачивают в паровых аппаратах при температуре 100 °C в течение 10...15 минут, либо пропускают через дробилку.

Производство витаминизированных пастообразных фитоконцентратов «Витаминка», «Витаминка цветочная», «Медок» и «Медок (оригинальный)». Процесс сушит свежих яблок используют консервированные яблоки. Стеклянные банки, заготовленными полуфабрикатом яблочного пюре, перед вакуумированием тщательно моют в щелоче до полного удаления пыли и грызни, а затем пропускают через дробилку. Отходы после обработки трещин и щерн из банок содержащие вредные вещества не используют. Вытнутую из банок консервированное яблочное пюре подогревают до температуры 65...75 °C в подогревателях типа «Вотатор» или других и фильтруют на протировочных машинах с диаметром отверстий 0,4...0,5 мм. Сульфицированное пюре десульфицируют до содержания в нем сернистого ангидрида не более 0,025 %. Сахар-песок и лимонную кислоту для отделения механических примесей просевают на ситах (размер ячек не более 3 мм) с магнитным увлажнением.

Пыльцу цветочную (обжигая) замешивают в соответствии с действующей нормативной документацией до размера частиц 5...20 мкм.

В полученную массу яблочного пюре с содержанием сухих веществ (СВ) 11 % добавляют рецептурное количество сахар-песка. Приготовленное продукта можно ввести как в вакуум-выпарных аппаратах, так и в варочном котле с механическим или ручным перемешиванием. После растворения сахара в яблочном пюре смесь (яблочный полуфабрикат) уравнивают в вакуум-выпарных аппаратах при температуре 40 °C и давлении 0,5 атм (либо в варочном котле при температуре 100 °C) до содержания СВ 66...72 %. В уваренную смесь добавляют рецептуюрное количество β-каротина (масляного 0,2 %), лимонной кислоты, аскорбиновой кислоты, которые предварительно растворяют в смеси волно-спектральных экстрактов (кориандр, календула, мелисса) - для «Витаминки», «Витаминки цветочная»; кориандр и черешня - для фитоконцентратов «Медок» и «Медок (оригинальный)» и ароматические пищевые экстракции (Миндаль Никитский, Абрикосовый нюх) для «Витаминки» и «Витаминки цветочная»; «Медовая нюх» для фитоконцентратов «Медок», «Медок (оригинальный)».

В помещении, где осуществляется процесс фасовки, относительная влажность воздуха должна быть не более 75 %, температура - не выше 25 °C.

Упаковка, маркировка и хранение витаминизированных пастообразных фитоконцентратов проводится в соответствии с действующими техническими условиями (в стеклянную герметически закрытую тару). Срок хранения в стеклянной таре и в металлических банках - 12 месяцев, в бочках - 3 месяца (при температуре от 0 до 2 °C).

Для приготовления продукта используются варочные котлы, изготовленные из нержавеющей стали, эмалированные или другие сборники, имеющие мерки и температурную насадку.

Для кратковременного хранения волно-спектральных экстрактов из растительного сырья (в течение 4...5 часов) используют купажные аппараты и различные производственные сборники, которые должны быть изготовлены из не-
ржавеющей стали, покрытой стеклоземовым покрытием. Для сбора и хранения экстрактов желательно использовать вертикальные сборники, которые оснащены мешалками. Во всех производственных сборниках должны быть водометные стекла, крышки и закрывающиеся люки.

Все продуктовые магистрали выполняют из нержавеющих труб по ГОСТ 9441 или стеклянных по ГОСТ 8894. Магистрали из нержавеющих труб оборудуют смотровыми фонарями. Запорная и регулирующая аппаратура должна быть выполнена из антикоррозийного материала.

Аппаратура-технологическая схема производства витаминизированных пастообразных фитоконцентратов «Витаминка», «Витаминка (цветочная)» «Медок», «Медок (оригинальный)» такова, что необходимо руководствоваться строгим соблюдением санитарного режима на пищевом предприятии, включающего содержание помещений, санитарную обработку оборудования, инвентаря, посуды, а также выполнение правил личной гигиены работниками предприятия.

Профилактические, санитарно-гигиенические мероприятия и мойка технологического оборудования производятся периодически в соответствии с утвержденным графиком.

4.1. Исследование химического состава, термостабильности, pH-стабильности новых пастообразных фитопродуктов на основе цветочной пыльцы

Качество вновь создаваемых продуктов должно соответствовать требованиям внешнего рынка, т.е. они должны быть конкурентоспособными. В связи с этим изучен химический состав новых витаминных пастообразных фитоконцентратов с применением цветочной пыльцы, антиоксидантов и адаптогенов из НЛПАС.

При этом контролировали содержание витаминов (C, β-каротина), фенольных соединений с P-витаминной активностью, минеральных веществ (К, Ca, Mg, P, Na), белка, общего пектина, клетчатки. Результаты исследований приведены в табл. 4.1.

Показано, что новые фитоконцентраты отличаются высоким содержанием витамина С (136.8-141.1 мг/100г) и фенольных соединений с P-витаминной активностью (218-270 мг/100г). Как известно, последние обладают способностью образовывать нерастворимые комплексы с ионами тяжелых металлов, способствуют выведению их из организма, гасят свободные окислительные радикалы.
Аскорбиновая кислота усиливает действие фенольных соединений и, в свою очередь, является антиоксидантом. Наличие значительного количества этих веществ в продуктах питания может привести к лечебно-профилактическому действию: фитоактивы содержат также β-каротин (0,2...4,5 мг/100г), минеральные вещества: калий (89...115 мг/100г), кальций (32...45 мг/100г), магний (15...21 мг/100г), фосфор (18...30 мг/100г), натрий (8...16 мг/100г). В их состав входят также белок (1,6...2,0 %), пектин (1,1...1,5 %), клетчатка (0,8...1,3 %).

Специалистами Харьковского НПИ медицинской радиологии были проведены медико-биологические исследования полуфабрикатов "Медоком" и "Витамина". Выходе иммуномодулирующих свойств полуфабрикатов при воздействии ионизирующей радиации на ряд ключевых звеньев (специфической и неспецифической) защиты организма показано, что они существенно повышают иммунитет организма, обладают выраженным антиоксидантным действием. Исследованные полуфабрикаты рекомендованы к применению в питании как лиц, профессионально связанных с воздействием ионизирующей радиации, так и лиц, подвергшихся его воздействию в связи с аварией на Чернобыльской АЭС.

Разработанные витаминные полуфабрикаты "Медоком" и "Витамина" могут быть использованы как самостоятельные продукты питания и как добавки в различные продукты питания. С целью выявления наиболее оптимальных температурных режимов введения полуфабрикатов в различные продукты, при которых максимально сохраняются БАВ, была изучена зависимость изменения содержания витамина С от температуры окружающей среды. Изменение содержания витамина С его термостабильности определяли при температурах 30, 40, 50...120 °С через каждые 15 минут в течение 120 минут. Контролем служили разные, находящиеся при комнатной температуре. Результаты исследований приведены на рис. 4.3-4.4.

Полученные данные позволяют сделать вывод, что сохранность аскорбиновой кислоты обеспечивается повышенной вязкостью новых полуфабрикатов, поскольку малая подвижность молекул, вводимых в состав полуфабрикатов, приводит к замедлению процесса окисления аскорбиновой кислоты. С увеличением температуры воздействия снижается вязкость полуфабрикатов, увеличивается подвижность молекул, что приводит к окислению витамина C. Кроме того, высокие концентрации аскорбиновой кислоты в новых полуфабрикатах приводят к эффекту самостабилизации витамина C (при температурах от 30 до 80 °C).

На разрушение витаминов оказывает влияние не только температура среды, з которую могут быть введены полуфабрикаты, но и рН. Были проведены
модельные опыты при комнатной температуре для pH от 7 до 1. Содержание витамина C контролировали через 10, 20, 30, 60, 90, 120 мин и через 1 сутки. Установлено, что витамины C, содержащийся в полукрахматах «Медок» и «Витаминка», pH стабилизирован в течение суток при комнатной температуре (при pH от 7 до 1).

Новые витаминные пастообразные полуфабрикаты с использованием цветочной пыльцы рекомендуются в качестве биодобавок в продукты массового и лечебно-профилактического питания.

4.2. Исследование качества витаминизированных пастообразных фитоконцентратов в процессе хранения

В настоящей работе изучено также качество витаминизированных пастообразных фитоконцентратов «Витаминка» и «Медок» в процессе хранения в стеклянных герметических банках в условиях комнатной температуры в затемненном помещении. Срок хранения составлял 12 месяцев.

В процессе хранения фитоконцентратов контролировали массовую долю аскорбиновой кислоты и общее количество мезофильных, факультативно-анэробных и аэробных микроорганизмов. Результаты исследований представлены в табл. 4.2.

Таблица 4.2. Исследование качества витаминизированных пастообразных фитоконцентратов «Витаминка» и «Медок» в процессе хранения в герметической упаковке

<table>
<thead>
<tr>
<th>Фитоконцентрат</th>
<th>Срок хранения, мес.</th>
<th>Массовая доля витамина С, % к исход.</th>
<th>Общее количество мезофильных, аэробных и аэробных микроорганизмов, КОЕ в 1 г</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Витаминка»</td>
<td>0</td>
<td>139,4</td>
<td>2,1·10^3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>140,0</td>
<td>2,2·10^3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>139,5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>138,9</td>
<td>2,1·10^3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>130,2</td>
<td>2,2·10^3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>128,2</td>
<td>2,1·10^3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>116,0</td>
<td>2,3·10^3</td>
</tr>
</tbody>
</table>

Установлено, что качество фитоконцентратов практически не меняется в течение 6 месяцев. Через 8 месяцев хранения массовая доля витамина С снижалась на 5,3...6,6 %, через 10 месяцев - на 8,1...9,8 %, через 12 месяцев - на 15...17,1 %. Общее количество мезофильных микроорганизмов практически не менялось (табл. 4.2).

Таким образом, в герметической упаковке витаминные пастообразные фитоконцентраты хранятся без заметных изменений качества в течение 12 месяцев.

Витаминизированные пастообразные фитоконцентраты - полуфабрикаты высокой степени готовности, фильтрованные в огнестойком, безалкогольном производства, безалкогольного производства, в условиях обработки, в условиях упаковки и обработки.

4.3. Разработка рецептур и технологии фитоконцентратов «Витаминка» иммуномодулирующего действия

Одной из важнейших тенденций развития пищевой промышленности в мире является производство продуктов диетических, низкокалорийных, а также предназначенных для профилактики и лечения различных заболеваний и необходимых при работе в экстремальных условиях. В настоящее время в Украине весьма актуальна проблема создания и внедрения в массовое производство продуктов направленного лечебно-профилактического действия, которые в зависимости от существующей или формирующейся неблагоприятной экологической обстановки могли бы корригировать возникшие патологические сдвиги в организме человека. В этом плане особо выделяется направление
создания пищевых продуктов, обладающих ценных качествами для организма человека в условиях повышенного радиационного фона и стресса. Это связано с последствиями аварии на Чернобыльской АЭС, в результате которой миллионы людей подвергаются как внешнему, так и внутреннему облучению от поступающих извне и инкорпорированных радионуклидов.

Учитывая чрезвычайную радиочувствительность иммунной системы и возможность развития иммунодефицита при воздействии относительно малых доз ионизирующих излучений (с последующими ближайшими и отдаленными последствиями, в частности увеличением частоты онко- и общей заболеваемости), представляется необходимым поиск природных комплексов БАВ, способных поддерживать иммунную защиту облученного организма. В этом отношении весьма перспективными могут оказаться различные фитоконцентраты и фитодраже на основе цветочной пыльцы и экстрактов из НЛПАРС.

Настоящий раздел посвящен разработке фитодраже иммунностимулирующего действия на основе поливитаминной фитофдочки из цветочной пыльцы, меда, экстрактов из лекарственного и пряноварочного растительного сырья, обладающих антиоксидантной и иммунностимулирующей активностью, а также аскорбиновой кислоты и β-каротина («Витаминка», «Витаминка (с изюмом)», «Витаминка (с арахисом)»). Как известно, в Украине практически отсутствует такая продукция. При создании новых фитопродуктов с потенциальной иммунностимулирующей активностью использовали цветочную пыльцу и водно-спиртовые экстракты из НЛПАРС (из корня солодки, корнянда, донника и других). Витаминизацию фитодраже производили добавлением аскорбиновой кислоты и β-каротина. При этом исходили из содержания полусотенной потребности в перечисленных витаминах в дозе 50 г фитодраже.

Драже «Витаминка» противорадиационного и иммунностимулирующего действия представляет собой смесь сахара-песка с водно-спиртовыми экстрактами из композиции донника, корнянда, солодки и других НЛПАРС, а также β-каротина масляного, пыльцы (обножки), меда натурального, аскорбиновой и лимонной кислот, пищевого красителя и эссенции.

Драже «Витаминка (с изюмом)» представляет собой смесь тех же компонентов с добавлением изюма.

Драже «Витаминка (с арахисом)» включает в подобную же смесь ядра жареного арахиса.

Технология производства драже включает в себя следующие основные этапы (рис.4.5):
- приготовление корпусов драже;
- приготовление поливочного сиропа;
- приготовление поливочной смеси для дражирования, включающей поливочный сироп, аскорбиновую и лимонную кислоты, β-каротин масляный, мед натуральный, водно-спиртовые экстракты из допники, кориандра, солодки;
- дражирование;
- глазурование;
- фасовка, упаковка, маркировка и хранение.

4.4. Исследование качества нового фитодраже в процессе хранения

В работе изучено качество витаминизированного фитодраже «Витамикина» в процессе хранения в полиэтиленовых пакетах при комнатной температуре в течение 6 месяцев. В процессе хранения контролировали следующие параметры: массовую долю аскорбиновой кислоты, β-каротина и общее количество мезофильных, факультативно-анаэробных и аэробных микроорганизмов. Результаты исследований представлены в табл. 4.3.

Таблица 4.3. Исследование качества фитодраже «Витамикина» в процессе хранения при комнатной температуре

<table>
<thead>
<tr>
<th>Продолжительность хранения, мес.</th>
<th>Массовая доля</th>
<th>Общее количество мезофильных, факультативно-анаэробных микроорганизмов, КОЕ в 1 г продукта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>витамина С</td>
<td>β-каротина</td>
</tr>
<tr>
<td></td>
<td>мг/100 г продукта</td>
<td>% к исх.</td>
</tr>
<tr>
<td>1</td>
<td>80,5</td>
<td>100,0</td>
</tr>
<tr>
<td>2</td>
<td>79,9</td>
<td>99,2</td>
</tr>
<tr>
<td>3</td>
<td>81,1</td>
<td>101,0</td>
</tr>
<tr>
<td>4</td>
<td>80,5</td>
<td>100,0</td>
</tr>
<tr>
<td>5</td>
<td>79,7</td>
<td>99,1</td>
</tr>
<tr>
<td>6</td>
<td>74,2</td>
<td>92,5</td>
</tr>
<tr>
<td>7</td>
<td>72,5</td>
<td>90,1</td>
</tr>
</tbody>
</table>

Примечание. Каждая величина — среднее арифметическое 3–5 измерений.

Установлено, что качество фитодраже «Витамикина» практически не меняется в течение 5 месяцев со дня приготовления. Через 6 месяцев хранения массовая доля витамина С снизилась на 9,9 %, β-каротина — на 11,1 %. Общее количество мезофильных, факультативно-анаэробных и аэробных микроорганизмов практически не меняется.

Таким образом, качество разработанного фитодраже в течение 6 месяцев хранения в полиэтиленовых пакетах при комнатной температуре практически не изменяется.

По заключению специалистов Харьковского научно-исследовательского института медицинской радиологии и Харьковской фармацевтической академии, фитодраже «Витамикина» обладает иммуномодулирующими и радиозащитными действиями.

Таким образом, разработаны научные основы нового способа формирования качества и безотходной технологии получения витаминных фитодобавок из цветочной пыльцы с использованием жидкого и газообразного азота на стадии замораживания и измельчения. Установлено, что новый способ переработки цветочной пыльцы позволяет не только сохранить все витамины, ароматические и питательные вещества, но и получить более биологически обогащенный и биодоступный конечный продукт с улучшенными по сравнению с исходным сырьем свойствами.

Исследован химический состав десяти различных видов цветочной пыльцы (плодовых деревьев, луговых цветов, рапса, вербы, ольхи, кленя, дуба, пихты) с различной формой и диаметром пыльцевых зерен от 10 до 90 мкм как потенциальных источников витаминов и других БАВ, в связи с возможностью его использования для производства витаминных фитодобавок. Показано, что в исследуемых видах пыльцы больше всего содержится в (мг/100 г продукта): витамина С - 30...111; β-каротина - 0,7...24,0, витаминов E - 2,6...6,3, B2 - 1,5...5,0, B1 - 0,3...0,8, флавоноидов с P-витаминной активностью - 1,2...2,9; минеральных веществ, особенно калия - 384...7000, кальция - 238...297, фосфора - 190...664; а также полноценных белков - 15...33 %, сахаров - 18...61 %.

Разработана технология и технологическая схема производства гомогенизированных витаминизированных фитоконцентратов из яблонь, вишенки, цветочной пыльцы и экстрактов-антиоксидантов из НЛПАРС (ТУУ 40-01566330-008). Изучены их биохимические и профилактические свойства, термостабильность, сроки хранения. Разработаны нормы их использования в различных продуктах питания.

Научно обоснованы, разработаны и внедрены в промышленность технологии трех видов драже лечебно-профилактического действия на основе порошков из цветочной пыльцы, антиоксидантов из НЛПАРС, витаминов (ТУУ 40.1566339-005). Изучен их химический состав и качество в процессе хранения. Исследованы
их медико-биологические свойства и показано, что они обладают иммуномодулирующим и радиопротекторным действиями.

Полученные мелкодисперсные витаминные фитодобавки из цветочной пыльцы и растительного сырья рекомендованы для использования в качестве биодобавок-наполнителей при изготовлении продуктов профилактического и массового питания: при изготовлении кондитерских изделий (драже, начинок для конфет, лукум, эспади, кремс, десертов, печенья и т.п.), безалкогольных напитков и соусов-нектаров, коктейлей, молочных изделий (творожных и сырковых масс, коктейлей, кисломолочных продуктов), лечебных блюд.

Проведен комплекс работ по внедрению результатов исследований в практику. Разработанные витаминные пищевые добавки из цветочной пыльцы, а также фитоконцентраты и драже на их основе внедрены на предприятиях пищевой промышленности Украины (в Харькове, Виннице, Киеве и Латвии). Предложены принципиальные схемы технологических линий по производству пищевых фитодобавок, фитоконцентратов и драже. Рассчитана экономическая эффективность от внедрения 1 тонны витаминной фитодобавки из цветочной пыльцы, которая составляет 4,2 тыс. грн., нового полуфабриката - 2,2 тыс. грн. (в ценах на 1.09.2000 г.).

Список использованной литературы

89. Петренко З.Н. Ультраструктурная характеристика слизистой оболочки желудка людей и экспериментальных животных, находящихся в зоне повышенной радиации после аварии на Чернобыльской АЭС. Автореф. дис. канд. техн. наук. - Киев, 1990. - 25 с.

111. Новые прогрессивные технологии пищевых добавок и продуктов иммуномодулирующего и радиозащитного действия из растительного сырья и цветочной пыльцы / Р.Ю. Павлюк, А.И. Черевко, Г.А. Симакина и др. - Харьков; Киев, - 1998-290 с.

АМАРАНТ: ЦЕЛЕСООБРАЗНОСТЬ ПЕРЕРАБОТКИ В ПРОДУКТЫ И ДОБАВКИ ПОВЫШЕННОЙ БИОЛОГИЧЕСКОЙ ЦЕННОСТИ

Среди разнообразных видов нетрадиционного растительного сырья, содержащего значительное количество белка, углеводов, жиров, одним из наиболее перспективных является амарант. На земном шаре существуют около 65 родов и 900 видов амаранта, которые распространены, главным образом, в тропических и субтропических районах. В Украине встречается 5 родов амаранта (около 15 видов). Как правило, это сорняки с красиво окрашенными листьями и ветвистым соцветием, которые используются в декоративном садоводстве.

История амаранта служит еще одним подтверждением известной истине: новое - это хорошо забытое старое. Растение, которое кормило жителей американского континента восточную тыквенность тому назад, сегодня предстаёт перед нами в образе незнакомца. В тридцатые годы 20-го столетия занялись изучением амаранта и в нашей стране. Активное участие в судьбе этого продукта принял академик Н.Н. Вавилов, который считал амарант хлебом третьего тысячелетия. Но в годы гонений на генетику амарант признали чужеродным растением, опасным сорняком и притворяли к уничтожению.

Известно, что амарант - растение, которое любит свет, влагу, тепло. В результате перекрестного опыления несколько видов без пространственной изоляции легко образуют гибриды с переходными формами и разнообразной окраской соцветий.

Фотосинтетическая способность и фотодыхание этого древнего растения тоже вызывают особый интерес, поскольку эти процессы у амаранта необыкновенны. Листовая поверхность у основных видов амаранта большая и, в зависимости от густоты насаждений и площади питания, может достигать 9,6 м² на 1 м² площади посева.

Природа, создавая амарант, побеспокоилась о многочисленных жизненно важных деталях. Амарант имеет удивительную способность высокоэффективно использовать солнечную энергию и воду. У него, в отличие от большинства других сельскохозяйственных культур, отсутствует так называемая «полуценная де-
прессия фотосинтеза, во время которой растения в течение 3...4 часов не синтезируют органические вещества, зато активно их используют для дыхания.

В наших условиях амарант - чемпион по жароустойчивости, поскольку выдерживает температуру выше 50 °C, потребность во влаге в 2...2,5 раза меньше, чем у бобовых или злаковых культур. Чрезвычайно важным качеством является высокая семенная производительность. Урожайность даже при самых неблагоприятных условиях составляет не менее 20 ц с гектара. Более благоприятные условия дают возможность повысить урожайность в 1,5...2 раза. Что касается коэффициента размножения амаранта, то такого высокого не имеет ни одна традиционная культура - 1:500 000.

Зелень амаранта содержит 27...33% белка по сухой массе, поэтому его стебли и листья - чудесное сырье для экстракции белка, из которого, в свою очередь, можно изготовить разнообразные продукты питания и добавки, имитирующие мясные и рыбные продукты. Листья и молодые стебли имеют приятный вкус, их полезно заготавливать на зиму в сухом и засолненном виде. В Японии, где использование амаранта получило наибольшее распространение, его молодую зелень сушат с маслом кальмара. Около 200 г листьев амаранта покрывают пятую часть необходимой суточной нормы белка, повышая при этом усвоение белка, содержащегося в других продуктах. Листья и стебли амаранта богаты также витаминами группы В, витамином C, каротином и минеральными веществами.

На протяжении лета амарант дает несколько урожаев с одnego и того же стебля, высота которого достигает трех метров.

Важным является тот факт, что растение противостоит болезням и вредителям. Это дает возможность не применять на посевных площадях под амарант ядохимикаты и получить, таким образом, экологически чистую продукцию.

В США и других развитых странах уже создана индустрия амаранта. В пищу употребляют листья для салатов, закусок, супов. Семена амаранта используют как добавку к хлебу, кондитерским изделиям и т.д. В Китае, где под амарант занято свыше 100 тыс. га земли, с его помощью пытаются решить проблему пищевого белка.

Проф. Л.И. Карнаушенко - одна из первых исследовательниц этой культуры в Украине - рекомендует технологию производства мармелада с использованием муки из зерна и листьев амаранта. Оказалось, что небольшая его добавка (2...3% к массе сухих веществ готового продукта) уменьшает потребность в желатинователях на 50%, полностью исключает использование красителей и кислот. При этом, вдвое уменьшается длительность уваривания мармеладной массы, процесс желатинования завершается в течение 7...8 мин. С помощью методов ИК-спектроскопии автором установлено, что в образовании желе принимают участие не только олиго- и полимерные формы углеводов, но и функциональные группы амилозы, пребывающие в свободной и связанной формах.

В чем же секрет феномена амаранта? Ответ на этот вопрос подсказал еще древний знак - кукруза. Оказалось, что фотоинтеграта у него происходит не в семенах, а в стеблях. Кроме обычного, так называемого ночного, дыхания кукрузе свойственно и дыхание на свету, при котором одновременно с фотосинтезом, в процессе которого происходит углекислота, происходит ее выделение. Об этом противоположном фотосинтезу процессе стало известно во второй половине нашего столетия.

Лауреат Нобелевской премии М.К. Калла, описывая свое время путь преобразования углеводного газа в углеводы, установил, что первыми стабильными продуктами такой трансформации, происходящей в листьях растений, становятся молекулы фосфорилоксановой кислоты и фосфорилоксиролана. Исследуя цикл Калла, канский ученый Ю.С. Карпилов в 1960 г. сделал важное открытие, в котором определил, что у кукрузы фотоинтеграта происходит своеобразно. Радиоактивная метка появлялась не в трех, а четырехуглеродных молекулах шавелевой, яблочной и аспартатной кислот. Вскоре стало известно, что такой же механизм имеет сахарный тростник, лебеда и некоторые другие злаки, в основном, тропического и субтропического происхождения, у которых несколько отличная от других путь структура клеток зеленого листа.

С того времени все растения разделили на два типа: C3 и C4. При этом, как позже доказал ученик из Австралии М.Хет и К.Спек, четырехуглеродные растения обладают способностью высокоэффективного усвоения углерода. Так, если кукруза и сахарный тростник способны усваивать в течение часа каждым квадратным дециметром своего листа 80...100 мг углеокислот, то растения C3-типа (пшеница, овес, сахарная свекла) - всего 30...50 мг. Экспериментально заинтересовался канадский исследователь Дж. Деккер, который в 1955 г. обнаружил процесс, названный "фотодыхание". Заглянуть в механизм жизнедеятельности растений, которое, казалось бы, наполовину теряется, то, что происходит в процессе фотосинтеза, удалось канадским исследователям. В 1970 г. д-р биол. наук А. Лайнек пришел к выводу, что фотодыхание - результат конкуренции между молекулами углеокислоты и кислорода за атмосферу, а не за место, в которой происходит обмен углеродом. Этим объясняется тот факт, что фотоинтеграта сбрасывает при увеличении концентрации кислорода в воздухе, а фотодыхание усиливается при высоких концентрациях углеокислоты. Таким образом, для растений C3-типа фотодыхание - это нарушение нормального функционирования организма.
Участники конференции «Реализация и фотосинтез», состоявшейся в 1970 г. в Канберре, пришли к выводу, что растение C₃-типа — это более совершенные формы, лучшие приспособленные к жизни в условиях обедненной углекислотой атмосферы. Таким образом, переход на более экономный C₄-тип фотосинтеза является лучшим способом адаптации растений к изменяющейся обстановке.

Результаты анатомических исследований показали, что независимо от условий выращивания амапарта, видов и форм характерным для него является именно анатомическое строение C₃-типа. Хлоропластины находятся в клетках листа и расположены вокруг сосудистого пучка двумя концентрическими слоями, поэтому фотосинтез в растении очень экономичен по отношению к углекислоте: амапарт фиксирует вдвое больше углерода на единицу испаренной листковой воды, в противовес растениям C₄-типа. В клетке амапарта происходит более 20 тысяч биохимических реакций за секунду.

Такие растения произрастают в более южных районах на землях, приспособленных к условиям жаркого и сухого климата. Для большинства растений C₃-типа характерен очень низкий уровень размещения компенсационного пика, пониженный уровень фотодыхания и метаболизма. Возможно, эти особенности и лежат в основе ключевых процессов, определяющих высокую продуктивность амапарта.

Из литературы известно, что амапарт можно образовывать на любых уровнях, потенциальные возможности по формированию высоких урожаев подразумевают на кислых, малогумусных грунтах, что влияет на биометрические показатели растений. Лучшие предшественники амапарта — картофель, кормовая свекла и другие пропашные культуры.

Летом 1985 г. на западе США испытали первые пшеничные селекционные линии амапарта, которые дали многообещающие результаты. Помощник директора исследовательского центра, который осуществил эти работы, И. Кауфман делал такой вывод: «Мы дали ферментам одинаковые формы, которые никогда раньше не существовали. Хотя почти ничего не известно о генетике амапарта по сравнению с кукурузой и пшеницей, мы показали, что положительные результаты возможны при использовании стандартных селекционных методов — амапарт можно легко окультурить».

Селекция амапарта началась во многих районах нашей страны. В государственном сортоиспытании с 1988 г. находится один кормовой гибридный сорт селекции — «Стерп». Сорт получен методом гибридизации и много годичного подбора. Сорт среднечерноземный, выдерживает легкие заморозки, стойкий к заморозкам. Сейчас в Украине имеется еще два районированных сорта амапарта — «Ультра» и «Атланти». В условиях лесостепи Украины проведена селекционная работа по изучению безлесной формы амапарта «Аргентинского». В результате исследований было установлено, что у амапарта зеленой массы и семян амапарта «Аргентинский» превосходит амапарт «Багровый». Семена семян его меньше, и они почти не скрепляются с однотипными сорняками, что имеет большое значение для семеноводства и селекции.

Некоторые виды амапарта могут быть рекомендованы для выращивания с кормовой целью, другие — для получения семян и в качестве овощного растения. Поэтому подбор наиболее перспективных форм, видов, гибридов и сортов в каждом конкретно-климатических условиях имеет особое важное значение в конкретных экологических условиях.

Наиболее значительные результаты получены селекционерами США, Мексики, Аргентины и Испании. Здесь собранны больше коллекций амапарта, из которых берется необходимый исходный материал для выведения перспективных сортов. В Перу, Мексике и Аргентине разработаны специальные программы, по которым весьма успешно ведутся работы с целью снижения концентрации нитратов и оксалатов в фитомассе амапарта. Благодаря таким исследованиям китайским ученые удалось получить урожай зерна в 53,5 центнера с гектара, при потере от осушения всего 5%, что представляет большой практический интерес. В Непале достигнут еще больший урожай зерна - 56 центнеров с гектара. Многообразное использование фитомассы оказалось эффективным, не исключая при этом и повторного сбора семян.

Как показал отечественный и зарубежный опыт, в том числе Института амапарта в США, зеленая масса, совокупная с семена амапарта по содержанию белка, аминокислот, макро- и микроэлементов, витаминов значительно превышают традиционные кормовые и пищевые культуры и могут использоваться для кормовых, пищевых, технических и лечебных целей.

Химический состав амапарта выгодно отличается от химического состава традиционных основных культур. В зависимости от сорта растение содержит 18 до 30% высококачественного белка, удачно сбалансированного по аминокислотам, в том числе как в пшенице всего 9–16, в кукурузе 10–13, в ржи - 8%. Ученые физиологи утверждают, что у амапарта и пищевыми свойствами амапарта не имеет конкурентов. По принятой шкале качества (степень ФАО/ВОЗ белок куриного яйца = 100 баллов) белок амапарта оценивается в 75 баллов, а известный всем поставщик белка — соя — 72 балла.
Благодаря этим качествам амараント как высокобелковое растение, к тому же отличающееся высокой продуктивностью и устойчивостью к засухе, вредителям и болезням, во многих странах стала объектом серьезных исследований ботаников, биохимиков, физиологов, генетиков, селекционеров и агрономов, а также зоотехников, фармакологов и технологов-переработчиков.

Изучением уникальных особенностей амараントа и разработкой высокоэффективных способов получения из него продуктов и добавок повышенной биологической ценности занимаются на протяжении последнего десятилетия ученые стран СНГ. Убежденным пропагандистом амараントа стал заведующий лабораторией фотосинтеза биологического факультета Санкт-Петербургского университета, д-р биол. наук И.М. Магомедов. Сотрудники его лаборатории совместно с коллегами из ВНИИ растениеводства им. Н.И. Вавилова на протяжении нескольких лет выращивают амараント в совхозе «Стеблов» под Санкт-Петербургом и получают 800...1100-центнерные урожай биомассы. Коллекция амараントа, собранный исследователями ВНИИ растениеводства, составляет в настоящее время 256 образцов. География этих сборов разнообразна: Финляндия, Англия, Бельгия, Франция, Германия, Греция, Испания, Албания, Ирак, Иран, Испания и т.д.

Ведутся широкомасштабные исследования выращивания амараントа в Беларуси, Киргизстане, на юге России и у нас в Украине. Украинский НИИ растениеводства, селекции и генетики им. В.Я. Юрьева занимается изучением амараントа на протяжении ряда лет. В институте подготовлены рекомендации по агротехнике возделывания амараントа, заключающиеся в договоре с хозяйствами по испытанию и производству зерна. Выращивание амараントа исследуют в Харьковской, Запорожской, Тернопольской и других областях. Заслуживает внимания опыт одного из КСП Запорожской области. На трех уделяемых друг другу участках поготвойна разместили свои кормовые площади. На двух участках росла кукуруза, а на третьем - амараント. За период вегетации дождей почти не выпадало. И если кукуруза дала по 100...200 ц зеленой массы с гектара, то ее конкурент почти шестьсот. К тому же амараント открыв еще одно преимущество: конверсия кормов может действовать до самого снача.

По мнению исследователей, питательные смеси, в состав которых входит мука из амараントа, пригодны для детского, профилактического и лечебного питания. Использование в пищевом рационе добавок из амараントа вызывает положительные изменения в характере гемолиза эритроцитов, улучшает процессы кровообращения, вызывает защитный эффект клеточных мембран от радиоактивного излучения, уменьшает уровень перекисного окисления липидов и количество сво-

<table>
<thead>
<tr>
<th>Вид амараントа</th>
<th>Массовая доля, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>влаж.</td>
</tr>
<tr>
<td>Белосеменной</td>
<td>10,8</td>
</tr>
<tr>
<td>Розовосеменной</td>
<td>12,2</td>
</tr>
<tr>
<td>Черносеменной</td>
<td>11,4</td>
</tr>
</tbody>
</table>
Таблица 5.2. Биохимический состав зерен амараанта, сорт «Батриний»

<table>
<thead>
<tr>
<th>Компонент</th>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Витамин С, мг/100 г</td>
<td>54,6</td>
</tr>
<tr>
<td>Витамин В₁, мг/100 г</td>
<td>0,44</td>
</tr>
<tr>
<td>Витамин В₂, мг/100 г</td>
<td>0,38</td>
</tr>
<tr>
<td>Витамин В₅, мг/100 г</td>
<td>40,4</td>
</tr>
<tr>
<td>Витамин В₆, мг/100 г</td>
<td>2,9</td>
</tr>
<tr>
<td>Фолиевая кислота, мг/100 г</td>
<td>0,31</td>
</tr>
<tr>
<td>Пантотеновая кислота, мг/100 г</td>
<td>13,8</td>
</tr>
<tr>
<td>Общее количество нуклеиновых кислот, мг/100 г</td>
<td>2,42</td>
</tr>
<tr>
<td>Флавоноиды, витекса, мг/100 г</td>
<td>0,46</td>
</tr>
<tr>
<td>Углеводы, %</td>
<td>65,8</td>
</tr>
<tr>
<td>Липиды, %</td>
<td>7,1</td>
</tr>
<tr>
<td>Зола, %</td>
<td>3,9</td>
</tr>
<tr>
<td>Азот, %</td>
<td>3,1</td>
</tr>
<tr>
<td>Общий белок, %</td>
<td>20,8</td>
</tr>
<tr>
<td>в том числе:</td>
<td></td>
</tr>
<tr>
<td>легкоаэрозолируемый, %</td>
<td>4,9</td>
</tr>
<tr>
<td>труднорастворимый, %</td>
<td>15,9</td>
</tr>
</tbody>
</table>

Потребность человека в белке (как растительного, так и животного происхождения) зависит от его возраста, пола, характера трудовой деятельности. Особенно важное значение имеет растительный белок. В организме человека соблюдается баланс между количеством поступающих белков и количеством выделяющихся продуктов распада. Для оценки белкового обмена введено понятие азотного баланса. В зерновом зерне у здорового человека существует азотное равновесие. В молодом растущем организме идет накопление белковой массы, поэтому азотный баланс положительный - количество поступающего белкового азота превышает количество выводимого из организма. У людей пожилого возраста, а также при ряде заболеваний, при недостатке в рационе питания белков, незаменимых аминокислот, витаминов и т.д. наблюдается отрицательный азотный баланс. Действительно, его наличие ведет к гибели организма.

На белковый обмен, на поддержание необходимого азотного баланса решающее влияние оказывает биологическая ценность белков и их количество, поступающее в организм. В свою очередь, биологическая ценность белков определяется сбалансированностью аминокислотного состава и атакуемостью белков ферментами пищеварительного тракта, то есть их способностью к перевариванию.

В связи с этим, любые научные изыскания, направленные на совершенствование существующих или создание новых технологических приемов, способствующих повышению биологической усвояемости растительных материалов, поиск новых высокоэффективных, с этой точки зрения, культур, являются актуальными.

Разнообразен витаминный состав зерна амараанта. Известно, что для нормальной жизнедеятельности человека витамины крайне необходимы. Так как в организме они не синтезируются в достаточном количестве, то они должны поступать с пищей в качестве ее необходимого компонента. Витамин С, участвующий в окислительно-восстановительных процессах, положительно влияющий на центральную нервную систему, повышающий сопротивляемость организма человека в экстремальных условиях, содержится в амараанте в количестве свыше 50 мг/100 г. Стоило содержать его свежая капуста, салат, яблоки. Это количество на 20% меньше, чем у лимонов, но на 80% больше, чем у моркови. При тепловой обработке пищи витамина С разрушается практически полностью.

В полном составе представлены в амараанте витамины группы В. По содержанию витамина В₁ - 0,44 мг/100 г - амараант превышает зерно пшеницы, ячменя, бобов. В амараанте тиамин больше, чем в печени, вдвое больше, чем в мицре, в 4 раза больше, чем в картофеле и капусте, в 6 раз больше, чем в яйцах, в 11 раз больше, чем в сливочном масле. Известно, что при недостатке витамина В₁ в организме человека разрушается нервная ткань.

Витамина В₂ - 0,38 мг/100 г - в амараанте почти столько же, сколько и тиамина. При недостатке этого витамина нарушается синтез окислительно-восстановительных ферментов и ход окислительных процессов, дающих энергию для роста и развития организма, поэтому рибофлавин называют витамином роста. По содержанию витамина В₂ амараант почти равномерен зародышам пшеницы, в 6 раз превышает просо, в 12 раз - пшеницу, в 19 раз - морковь.

Витамина В₃ амараант содержит до 40,4 мг/100 г. Это больше, чем в пшеничных отрубях, в 65 раз больше, чем в белом хлебе; в 19 раз больше, чем в черном хлебе, вдвое больше, чем в печене, и практически столько же, как в пивных дрожжах. Недостаток нитратов в организме человека приводит к поражению центральной и периферической нервной систем.

Амараант богат также витамином В₆, недостаток которого в организме человека приводит к глубоким нарушениям белкового обмена, анемии, бессонницы и т.д. По содержанию пиродиоксин в амараанте почти идентичен пивным и хлебопекарным дрожжам, превосходит печень. В амараанте в 5 раз больше, чем в пшенице, в 18 раз больше, чем в сливочном масле, в 30 раз больше, чем в молоке.
Аналогичный анализ можно провести и по остальным компонентам, однако, и приведенные данные в достаточной степени свидетельствуют о высокой биологической и пищевой ценности амаранта.

Результаты табл. 5.2 подтверждают вывод о том, на земле нет растения, равноценного амаранту по содержанию высококачественного белка в гармоническом единении с хорошо балансированными микроэлементами, витаминами, углеводами.

Значительный интерес вызывает жирнокислотный состав зерна амаранта. Его определяли методом газожидкостной хроматографии. Согласно полученным результатам, в состав жирных кислот амаранта входят (в %): пальмитиновая кислота (22,1...26,0), стеариновая (4,5...6,33), олеиновая (18,4...20,7), линолевая (36,5...47,3), линоленовая (2,4...23,9), арахиновая (9,1...12,06), миристиновая (0,5...1,1). В количестве меньше 0,5 % находятся пентадекановая и гептадекановая кислоты. Коэффициенты ненасыщенности составляют: по соотношению ненасыщенных и насыщенных кислот 2,60 (для облепихового масла - 2,5; оливкового - 4,9; подсолнечного - 14,4); по соотношению монополиновых и насыщенных кислот - 0,70; по соотношению полиновых и насыщенных кислот - 1,7; по соотношению поли- и монополиновых - 0,4. Эти показатели свидетельствуют о высокой пищевой ценности масла амаранта.

Липиды амаранта содержат также значительное количество токоферолов (витамина Е), обладающих ярко выраженным антиокислительным эффектом - от 87,8 до 144,6 мг/100г.

По сравнению с другими растительными маслами масло из зерна амаранта содержит очень большое количество скалені (ненасыщенного углеводорода C_{30}H_{52}, являющегося в растениях и животных предшественником стероидных соединений) - от 5 до 7 %. Скален используется в настоящее время для лечения онкологических заболеваний, радиопаузы и СПИДа.

Свидетельством высокой биологической значимости амаранта являются также результаты определения качественного и количественного составов аминокислот, приведенные на рис. 5.1 (незаменимые аминокислоты) и рис. 5.2 (заменимые аминокислоты). Исходя из данных рис. 5.1, можно сделать вывод, что продукты переработки зерна амаранта целесообразно использовать в виде добавки при получении изделий из сырья с дефицитом лизина. Количество лизина в амаранте составляет 5...7 мг/100г, что значительно больше, чем в пшеничной, рисовой, гороховой и соевой муке (1,8; 2,6; 3,1; 4,0 мг/100г, соответственно). Введение уже 0,2 % лизина в пшеничную муку позволяет улучшить коэффициент биологической эффективности и достичь величины этого показателя, характерного для казеина.
Основным материалом для синтеза аминокислот является, как известно, аминокислоты, однако, при избыточном накоплении он отправляет ткани растений. В отсутствие этого в растительных организмах вырабатывается процесс нейтрализации, обезвреживания амиака с помощью образующихся аминов - глутамина и глутаминовой кислоты. Аспарагиновая и глутаминовая кислоты, образуя излишнее количество аминокислот, образуют соответствующие аминокислоты. В свою очередь, атроп от аспарагина и глутаминовая кислота от глутамина вновь используется для синтеза аминокислот, уничтожая их. В растительных и животных организмах обратные процессы образования аминокислот из глутамина и их расщепление. Соотношение аминокислот и аминогрупп в клетках растении различно. Большое количество глутаминовой и глутаминовой кислот в зерне амаранта (около 50 мг/100 г) свидетельствует об огромных возможностях этой культуры в биосинтезе белка.

Изучение белкового комплекса амаранта только начало. Наряду с изложенными вызывают интерес результаты изучения активности и электрофоретического спектра белков-ингибиторов тропина (трипсин) у разных видов амаранта, полученных белковыми исследователями. Активность белков-ингибиторов тропина определяется по уменьшению скорости гидролиза субстрата тропина в их присутствии. В качестве субстрата используются Nα-бензилдопамин-1-2-аргинин-тирионилларгинин. За основу определения активности ингибиторов тропина авторы взяли метод Фрица в модификации Гофмана. Вегетативные органы и семена экстрагировали 0,2 М NaCl в соотношении, соответственно, 1:20, 1:75. Экстракт центрифугировали при 12000 об/мин в течение 20 мин., после чего осаждали беликовые белки 0,5 и 1 М HCl при pH 4. После очистки центрифугирования получали нитрогенсаминовую фракцию, содержащую белки-ингибиторы тропина.

Электрофорез ингибиторосодержащей фракции белка семян амаранта проводили в аппарате АВГЭ-1 в 15 % поликарбилацетамидном геле по методу Дьеса. Идентифицировали ингибиторы тропина в зонированной пластинке по методу Зелинского.

Необходимость описанных выше определений связана с тем, что пищевая и кормовая ценность сельскохозяйственных культур зависит не только от качественного и количественного состава белков, но и от наличия в данной культуре токсичных и антагонистических соединений (лектины, глюкозилы, амилазы и др.). Среди этих веществ определенную роль играют и ингибиторы пищеварительных ферментов, характерной особенностью которых является их свойство связывать протеолитические ферменты (трипсин, химотрипсин) в непищевом комплексе. Экспериментальные данные свидетельствуют, что ингибиторы тропина на 40...50 % снижают прирост животных и вызывают гипертрофию поджелудочного железы. Инктивацию ингибиторов в семенах культур, богатых ими, при водят обычно путем промораживания до 100 °C.

Ингибиторы тропина представляют собой низкомолекулярные белки. Характерной особенностью их аминокислотного состава является высокое содержание цистина и почти полное отсутствие триптофана. Функции белков-ингибиторов тропина еще окончательно не установлены. Предполагается, что наряду с показателем качества белка эти биологически активные вещества играют определенную роль в защите растений от фитопатогенной инфекции.

Приведенные авторами определения уровня активности белков-ингибиторов тропина у различных видов амаранта показали, что он варьирует в семенах от 3 до 14 ингибиторных единиц. Наиболее активность белков-ингибиторов имеет семена амаранта хвостатого. Очевидно, семена этих видов амаранта, которые богаты ингибиторами, имеют более низкую устойчивость к фитопатогенной инфекции, поэтому в данном направлении необходимы дальнейшие исследования.

Суммарный белок амаранта зависит от его вида и сорта содержится, как уже отмечалось, до 40 % незаменимых аминокислот, что ставит его в ряд наиболее перспективных зерновых культур. Питательная ценность белка амаранта очень высокая - показатель его использования равен 1,5...2,0. Как известно, полезной для животного организма является только перевариваемая часть составляющих пищу веществ, поэтому для определения уровня обеспеченности рациона расчет ведут по перевариваемому белку. Коэффициент перевариваемости белка амаранта составляет 70 %.

Белок амаранта при биологической значимости 75 (кукуруза - 44, пшеница - 60, соя - 72, коровье молоко - 72) наиболее близок к балансу незаменимых кислот (100 по питательной ценности). Белок амаранта основан на значительных аминокислотных составе.

Известны данные свидетельствуют о том, что продукты переработки амаранта являются ценной пищевой добавкой и должны стать существенным резервом высококачественного белка и других БАВ. Это делает целесообразным и необходимым первоочередное исследование амаранта для применения его в пищевой промышленности с целью получения продукта добавок массового потребления, а также профилактического и лечебного назначения.
5.1. Структурные преобразования белков амаранта при замораживании

5.1.1. Общая характеристика белков амаранта

Основным биокомпонентом амаранта, придающим ему пищевую и биологическую ценность, является белок. Белки составляют не менее 50% сухой массы клеток и делятся на прочные, которые при гидролизе распадаются на аминокислоты, и сложные, дающие при гидролизе, кроме аминокислот, другие органические продукты - так называемые простетические группы белков. К их числу можно отнести нуклеозо- глико-, фосфо-, гемо-, флаво-, метилендиамминогруппы, которые содержат в качестве простетических групп РНК, фосфолипиды, гексосамины, фосфаты, железосодержащие группировки, флавононуклеотиды и разнообразные макроэлементы в активных центрах.

Белковая макромолекула в нативном состоянии обладает характерной для неё пространственной структурой, которую часто называют конформацией. Применение таких методов исследования, как ультрафильтрация и измерение скорости диффузии, дало возможность подойти к определению размеров и формы частиц различных белков. В результате было установлено, что растительные белки обладают, в основном, окружной, эллипсоидной формой. Они получили название глобулярных. К этой группе относятся и белки амаранта. Они достаточно растворимы и легко образуют коллоидные суспензии. Основной элемент структуры белков - полипептидные цепи.

По структурно-пространственной конфигурации в белках амаранта можно выделить два вида структур: первичную, характеризующуюся числом и последовательностью аминокислот, соединенных друг с другом пептидными связями в полипептидные цепи; вторичную структуру - вытянутую или спиральную конформацию первичной структуры, определяемую способ намертованием полипептидных цепей глобулярных белков.

Для глобулярных белков растительных материалов наиболее изучена третичная структура. Она поддерживается связями трех типов: ионными, водородными и дисульфидными, а также гидрофобными взаимодействиями. В количественном соотношении наибольшую важность имеют гидрофобные взаимодействия.

Белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, то есть, защитны от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Анализ литературных сведений по данному вопросу (чрезвычайно малочисленных) приводит к мысли о возможности существования для белков амаранта и четвертичной структуре, которая отображает более сложный способ расположения в пространстве отдельных полипептидных цепей в молекуле белка, удерживающихся за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей.

Описанные пространственные структуры полипептидных цепей придают высокую динамичность и функциональную подвижность белкам, выполняющим каталитические, гормональные и другие функции в клетках и тканях организмов. Благодаря такому строению белки амаранта неустойчивы к различного рода экзогенным влияниям, способным менять их микроокружение или конформационное состояние полипептидных цепей в глобуле. К таким влияниям относятся температура, различные виды химических модификаторов, ионизирующие и другие виды излучений.

Водные растворы белков амаранта - важнейшие высокоомолекулярные электролиты, содержащие основную аминогруппу NH2 и кислотную карбоксильную COOH. При растворении белков в воде протон, появляющийся в результате диссоциации карбоксильных групп, тотчас присоединяется к аминогруппам, и большая часть белков переходит в ионизированную форму:

![Diagram](image)

Оценка ионы H+ и OH−, белки в растворах находятся не в виде недиссоциированных молекул, а в виде амфотерных ионов.

Общий электрический заряд любой белковой молекулы соответствует состоянию ее ионогенных групп. Он может быть положительным, отрицательным и равным нулю. Белковые частицы могут менять свой заряд в зависимости от реакции среды: в кислой среде белок при электрофорезе передвигается к катоду, в щелочной - к аноду.

Заряд белковой молекулы в нейтральной среде не всегда равен нулю. Это определяется соотношением количества аминных и карбоксильных групп. Чем больше кислых групп COOH, тем выше кислотные функции белка и тем сильнее преблажают отрицательные заряды над положительными.

Принадлежность белка к кислой или основной группе определяется физико-химическими свойствами составляющих его аминокислот. Предложен способ
Классификация аминокислот, основанный на различной полярности их боковых групп. Боковые группы подразделяются на четыре основных класса: полярные, или гидрофобные; полярные, но не заряженные; положительно заряженные; отрицательно заряженные при pH 6-7, т.е. при значениях pH, соответствующих pH внутри клетки.

Пользуясь стандартными методиками для исследуемых сортов амаранта, мы определяли содержание белков и их аминокислотный состав. Так, для сорта амараanta «Багриный» количество общего белка составило 19,6 %, причем на легко-растворимую фракцию пришлось 4,1 %. Следует отметить, что в клетках амараanta белок образует сложные смеси в виде вязкой коллоидной массы, которая трудно поддается изучению. Дифференцирование этой массы на индивидуальные белки усложняется нестойкостью нативных молекул белка к изменению температуры, pH среды, влиянию различных растворителей и реагентов. В связи с этим все процедуры извлечения и очистки проводили при низких температурах (0–4 °C) в строго контролируемых условиях (pH среды, концентрация солей).

Фракционирование белков по растворимости проводили в такой последовательности: сначала путем водной экстракции извлекали альбумины, затем разбавленными растворами солей - глубулин, разбавленными растворами щелочей - глутаминовая кислота, 70 %-ным этиловым спиртом - пролиламин. Аминокислотный состав определяли на аминокислотном анализаторе КЛА-ЗЭ. Результаты определений обрабатывали методами вариационной статистики. В табл. 5.3 приведены данные содержания свободных и связанных аминокислот в зерне амараanta.

Анализ табличных данных показывает, что зерно амараonta содержит все необходимые организму человека аминокислоты, в том числе незаменимые. Так, содержание лизина составляет 5,27 мг/100г, валина - 3,24 мг/100г, лейцина - 5,94 мг/100г, гистидина - 4,22 мг/100г, глутаминовая кислота - 14,6 мг/100г, аспарагиновая кислота - 7,07 мг/100г. Среди свободных аминокислот не содержался только аргинин и триптофан.

Исходя из результатов анализа табл. 5.3 определили, какой из четырех классов по полярности боковых групп для данного вида белков является преобладающим:
- аминокислоты с неполярными группами: аланин - 3,15 %, лейцин - 5,94 %, изолейцин - 3,35 %, валин - 3,24 %, пролин - 3,61 %, фенилаланин - 5,05 %, триптофан - 0,91 %, метионин - 0,67 %, общее содержание этого класса аминокислот - 25,92 %;
- аминокислоты с незаряженными полярными группами: серин - 5,12 %, треонин - 3,77 %, глутаминовая кислота - 14,6 %, общее содержание аминокислот - 23,49 %;
- аминокислоты с отрицательно заряженными группами: аспарагиновая кислота - 7,07 %, глутаминовая кислота - 42,22 %, общее содержание - 49,27 %;
- аминокислоты с положительно заряженными группами: лизин - 5,27 %, аргинин - 5,07 %, общее содержание - 10,97 %.

Гистидин (2,68%), который содержит слабоосновную имидазольную группу, занимает по своим свойствам промежуточное положение между аминокислотами двух других классов.

Из приведенных данных видно, что наиболее многочисленным классом среди аминокислот зерна амараonta является класс, к которому относятся аминокислоты с отрицательно заряженными группами. Общим признаком их является более высокая по сравнению с другими классами растворимость в воде.
Содержание кислых аминокислот значительно больше, чем основных, что и определяет принадлежность белков амаранта к группе кислых.

Боковые группы белков амаранта, несущие электрический заряд, свободны и реакционноспособны. Они расположены на поверхности молекул белка, сохраняя связь с молекулами воды. По-другому обстоит дело с неполярными или полярными аминокислотами группами, которые соединяются между собой, образуя неводную фазу во внутренней зоне молекулы, «цементируя» таким образом белковую глобуллу. Эти группы переходят в реакционное состояние только после денатурации.

Поскольку в белках зерна амаранта аминокислоты с неполярными функциональными белковыми группами составляют около 50 % общего содержания, то эти белки должны быть достаточно устойчивыми к воздействию денатурирующих факторов, в отличие от тех, у которых преобладают основные свойства, например глиадин пшеницы, проламин и другие. Это предположение было подтверждено дальнейшими экспериментальными исследованиями.

При переработке белковосодержащих растительных материалов под воздействием различных физических и химических факторов белки подвергаются денатурации, а затем и коагуляции, изменения при этом структуры микромолекул, и, следовательно, в нативных свойствах, что в большинстве случаев снижает их биологическую и пищевую ценность.

Денатурация является сложным и еще недостаточно изученным физико-химическим процессом. Об этом говорит уже тот факт, что за последние десятилетия было предложено около 20 определений этого явления. Наиболее обобщенное определение дано М. Жоли: денатурация — это любая модификация вторичной, третичной или четвертичной структуры белковой молекулы.

Таким образом, денатурация не предусматривает глобоких нарушений структуры, т.е. разрыва пептидной связи — CO-NH1, освобождения отдельных аминокислот, разрушения полипептидной цепочки первичной структуры. Этим денатурация отличается от процессов гидролиза белка.

Денатурация белка может возникнуть под влиянием многих и весьма разнообразных физических и химических факторов. Следует отметить, что важную роль в процессах денатурации играет вода. С. Торндорф отмечал, что компакто свернутые пептидные цепи нативного белка не разрушаются до тех пор, пока в про странстве между цепями не попадает вода, поэтому сухие белки гораздо более устойчивы к тепловой денатурации, чем белки в растворе. Это явление автор объясняет способностью молекул воды образовывать водородные связи с карбоксилиными, амиными и другими полярными группами белков.

Различные изменения, обычно наблюдаемые при денатурации белка, имеют одну основу — нарушение упорядоченности структуры его молекул. Оно заключается, прежде всего, в разрыве вторичной структуры, которая в нативной структуре молекулы свернута в виде глобулы. Это приводит к увеличению радиуса группы (сульфидрильных, остатков тиозина и др.), скрытых у нативного белка внутри глобулы. Отдаётся пептидные связи, поэтому денатурированные белки легче рассеиваются под влиянием протеолитических ферментов, чем нативные.

Изменяется и степень дисперсности молекул в растворе. При денатурации может происходить их ассоциация или полимеризация, а в более общем случае — агрегация. При получении сухих порошкообразных материалов из амараца последний процесс является крайне нежелательным, поскольку ведет, как уже отмечалось, к ухудшению биологических показателей готовых продуктов.

5.2. Особенности замораживания воды в зерне амараца

Вода является одним из самых важных компонентов всего живого, и функции ее разнообразные. В биологических объектах, включая неживые системы, воду содержит от 60 до 90 % в объеме, которая играет важную роль в метаболических процессах и стабилизации функциональной активности компонентов клетки. На микро- и макроскопическом уровне вода является основной физической средой, в которой происходит взаимодействие между отдельными структурами. Важное значение имеет наличие воды в клетке, которая влияет на жизнедеятельность клеток.

На макроскопическом уровне вода является средой, которая переносит питательные вещества в живом организме и выделяет отработанные продукты. Для функционирования каждой клетки и органа клетки необходимым является критический водный баланс. Это критическое содержание воды изменяется на разных стадиях развития клетки.

Охлаждение и, особенно, замораживание растительных материалов значительно изменяют структуру воды, преимущественно на микро- и макроскопическом уровне, то есть тех функций, которые принимают участие в конформационных и структурных преобразованиях биокомпонентов. Поэтому при изучении процессов, которые происходят с биокомпонентами различного растительного сырья при замораживании, обязательным стало изучение роли воды в структурной стабильности составных частей клетки. Эта информация дала возможность установить механизм влияния низкой температуры на объект исследований и особенности способа замораживания для конкретного сырья, а также предусмотреть способы максимального сохранения его нативной структуры.
По самым новым данным методов ЯМР и ДСК, в биообъектах условно выделяют три фракции воды. Первая находится на определенном расстоянии от биополимеров или других компонентов мембраны. Она характеризуется подвижностью молекул, и именно ее называют свободной водой. Эта фракция воды метаболически активна, с ее участием связаны транспорт веществ и метаболитов, катион-анион, другие функциональные процессы. Вторая фракция находится ближе к биополимерам, менее подвижна, локализована в гидрофобных участках внутри биомолекул и мембраны. Она имеет более сложную структуру: считают, что эта фракция построена из клатратидатов, или полимерно-дисульфатных соединений. Третья фракция воды составляет билилипидную фазу и прочее фиксировано непосредственно на поверхности биомолекул за счет сил сцепления, например с заряженными группами белка. Методы ЯМР и ЭПР показывают, что слой воды вокруг молекул белка имеет толщину 0,5...0,6 нм и микропорозность его 2...3 раза больше, чем фракции свободной воды.

Прочность связывания фракций воды с молекулами биополимеров играет важную роль в формировании и поддержании их структурной организации.

Результаты проведенных нами исследований показали, что фракции воды, локализованные вблизи поверхности или в заплывных полостях биополимеров, при замораживании имеют размытую зону кристаллизации, охватывающую температурный интервал от 0 до -30 °С, а проче фиксированая билилипидная слой воды сохраняет подвижность молекул даже при температурах 130...150 °С.

С помощью метода эмпирического изучения установлено, что у различных видов растительного сырья (плодового, ягодного, овощного) количество свободной воды в клетках значительно выше (до 80 %), чем связанной. Однако как оказалось при последующих исследованиях, именно фракции связанной воды играют самую важную роль в стабилизации структурных функций (интеграции внутримембранных макромолекул и мембранных структур) в процессах диффузии веществ через мембрану.

Под действием низких температур вода в биообъектах кристаллизуется по-разному. Одни фракции воды образуют большие кристаллы льда, гексагональной структуры, другие - переходят в аморфное состояние. Замораживание объектов, в состав которых входит значительное количество сахаров, белков, аминокислот - так называемых криопротекторов, способствует, согласно результатам спектроскопических исследований, формированию аморфных структур, которые не столь губительны для клеток в цикле замораживания-оттаивания. Сегодня уже из-вестно, что при холодовой адаптации биообъектов в клетках происходит накопление водорастворимых белков и увеличивается их гетерогенность.

Из сказанного можно сделать вывод, что при охлаждении и замораживании растительных материалов вода клеток и тканей и по длительности, и по характеру кристаллизуется неоднородно, поскольку часть воды свободна, а часть - проче фиксирована, имея физико-химическими связями с поверхностью реакционнспособных групп макромолекул. Гидрофильные биополимеры, содержащиеся в клетке, способны удерживать в своем составе и близлежащем микроскульптуре определенное количество связанной и фиксированной воды, не замерзающей при достаточно низких температурах. Такая низкая точка замерзания этих фракций воды связана с их способностью концентрировать большое число растворимых веществ, в частности унитон, в результате чего формируется высоковязкая биологическая смеся в локализованных биологических компонентах цитоплазмы и мембранных структурах клетки.

Существование в клетке фракции связанной воды можно рассматривать как своеобразный барьер, противостоящий разрушительному действию концентрированных растворителей солей на биополимеры клетки при вымораживании свободной воды. Таким механизмом, как оказалось, обеспечивается устойчивость клеток к влиянию не только температуры, но и других экстремальных факторов - радиации, ядо и т.д., а причиной устойчивости некоторых высушенных форм бактерий к действию абсолютного спирта и других неводных растворителей является именно высокое содержание в них связанной воды.

В биологических системах, к которым относится объект нашего исследования - амарант, вода в чистом виде практически не встречается, поскольку она содержит различные гетероморфные включения (сахары, биомолекулы, ионы и т.д.). Скорость роста и структуры сформированных кристаллов льда в них зависит от числа центров зародышевого образования, скорости охлаждения и конечной температуры замораживания. Если степень переохлаждения низкая, то скорость образования зародышевых кристаллов невелика.

Разнообразие растворимых веществ, входящих в состав растительных клеток, влияет на скорость зародышевого образования. Можно предположить, что в высокоинтенсивных растворах кристалл амаранта с низкой вязкостью от 12 до 20 % образование зародышей кристаллов вообще может отсутствовать, а компоненты раствора будут переходить полностью из жидкого состояния в аморфное. Есть сведения, что способность к аморфному затвердеванию имеют высокоинтенсивные растворы многих криопротекторов: глицерина, сахарозы и т.д. В основе понимания таких растворов лежит увеличение вязкости среды,
что способствует интенсивному образованию зародышей кристаллов, тормозя в то же время их рост в объеме. Клеточный сок зерна амаранта является сложным составом, поэтому и замораживание его проходит в две стадии. Сначала идет первичная кристаллизация, при которой кристаллизуется растворитель (вода), а потом — вторичная кристаллизация, в ходе которой затвердевает растворитель и растворенные в нем вещества.

При охлаждении растительных материалов зона от 0 до -80 °C считают зоной кристаллизации охлажденной вне- и внутриклеточной воды, в результате чего биообъект переходит в состояние неполного анибизоида. Температурная зона от -80 до -150 °C является зоной кристаллизации фракции связанной воды и рекристаллизации процессов.

Важное значение имеет скорость замораживания, поскольку это дает возможность регулировать степень дегидратации клеток и тканей. Более того, степень упаковки свободной воды из клеток при замораживании является процессом, влияющим на темпы и уровень внутриклеточной кристаллизации. При очень низких скоростях охлаждения более 100 °C/мин некоторые виды клеток не успевают обезвоживаться и замерзают внутриклеточно. Если же скорость замораживания станет до 1...5 °C/мин, то клетка уменьшается почти на треть своего первоначального объема. В такой клетке или кристаллы льда не формируются, или величина их не достигает критических размеров.

Ориентировочно и в зависимости от практической потребности используют такие скорости замораживания объектов:
- от 5000 до 10000 °C/мин — сверхбыстрое замораживание;
- от 10 до 5000 °C/мин — быстрое замораживание;
- от 1 до 10 °C/мин — медленное замораживание;
- меньше 1 °C/мин — очень медленное замораживание.

Обзор литературы по вопросу замораживания растительного сырья с различным соотношением фракций свободной и связанной воды осветил еще одно важное явление. Речь идет о вымораживании воды — стекловидном состоянии воды. И хотя преимущества, которыми отличается вымораживание, были известны сотни лет назад, практическое его использование осуществлено совсем недавно.

5.3. Роль температуры в преобразовании биокомпонентов амаранта

Чтобы максимально сохранить в готовом продукте весь биогенный комплекс БАВ, заложенный в амаранте природой, обработку зерна надо проводить в наиболее мягких температурных условиях. При переработке белоксодержащего сырья традиционными тепловыми способами белки претерпевают различные преобразования, которые ухудшают их качество, изменения, в частности, способность к гидратации. Происходит также денатурация биополимеров и потеря летучих ароматических веществ, текстура продуктов модифицируется, повышенна жесткость белков. Использование сырья после тепловой сушки содержит значительное количество белка и денатурированного состояния, который имеет различную способность к регидратации и усвояемость живым организмом. В крахмале сырьё наблюдается образование белково-крахмальных неперевариваемых комплексов, связанное с понижением степени агрегации и денатурации белка, зависящее от температуры агрегации, межмолекулярной ковалентной S-S-связью в результате окисления SH-группы. Расторвоность белков при повышенных температурах может уменьшаться также под влиянием протеолитических и лизосомальных ферментов, свободных кислот и продуктов перекисного окисления липидов.

Таким образом, биологическая ценность продуктов переработки растительного сырья с применением высоких температур значительно ухудшается. В связи с этим экспериментальное доказательство целесообразности использования низкотемпературных методов переработки сельскохозяйственных материалов является актуальным и позволяет создать необходимую базу для разработки новых современных технологий сухих продуктов с повышенным содержанием биологически активных веществ из различных видов сырья — как традиционных, так и нетрадиционных для пищевой промышленности.

Использование жидкого азота как хладагента обусловлено его относительно низкой температурой кипения. Применение криогенных методов переработки дает возможность сохранить в готовом продукте почти в неизменном состоянии структуру белков, витаминов и других биологически активных соединений и препятствует порче продуктов за счет инактивации ферментов.

Важнейшим криогенным технологиям — замораживание растительного материала, после чего происходит или его непосредственное измельчение, или сублимацией закристаллизированной воды с последующим дезертированием сухого продукта. Поэтому поведение ампелов компонентов амаранта изучало в широком диапазоне температур, которым может подвергаться материал при различных физических воздействиях в реальных условиях получения высокодиапазонных порошков. Это понижение температуры от 4 до 0 °C, характерные для хранения зерна; отрицательные (от 0 до -156 °C при замораживании жидким азотом; положительные температуры от 100 до 120 °C), воздействие в локальных зонах при измельчении зерна амаранта без предварительного замораживания или при его теплом высыхании. Контролем служило ненарушенное зерно амаранта.
Качество белковых продуктов определяется, преимущественно, биологической ценностью белков, входящих в их состав. Биологическая ценность сложных белковых систем зависит от аминокислотного состава. Качество аминокислотного состава белка и его сбалансированность по отдельным аминокислотам является показателем биологической ценности продуктов.

Другим показателем биологической ценности продуктов является степень протеолиза белков, их анаэробная эффективность, доступность отдельных аминокислот к усвоению и другие факторы. Как видно из рисунка, согласно результатам биохимических исследований, зерно амаранта, наряду с беляками, содержит около 10% липидов, свыше 70% углеводов, значительное количество микроэлементов, витаминов и других компонентов. Такой широкий спектр составляющих обеспечивает разнообразные физико-химические взаимодействия при переработке белоксодержащего сырья, которые могут привести к изменению биологической ценности белковых продуктов. В связи с этим, этот показатель требует особого контроля на всех стадиях получения конечного продукта.

Определение биологической ценности белковых материалов проводилось на лабораторных животных (исследования в эксперименте). Определение биологической ценности белковых компонентов, например аминокислотного состава, их растворимости, модификации углеводами, липидами и т.д., требует поиска более быстрого, доступного и одновременно объективного метода оценки качества белковых продуктов. Работа в этом направлении имеет следующие задачи:

- оценка физико-химических свойств исследуемого продукта с учетом возможных изменений состояния белковых компонентов, например аминокислотного состава белков, их растворимости, модификации углеводами, липидами и т.д.;

- определение переваримости белкового продукта протеолитическими ферментами желудочно-кишечного тракта (ЖКТ);

- определение биологической ценности продукта с помощью тест-организма Tetrahymena pyriformis, использование которого предложено при биохимических исследованиях и успешно апробировано в ряде работ.

В исследуемых образцах амаранта определяли содержание витаминов, углеводов, общего азота по методу Кьельдаля, белковый и небелковый азот с использованием окисления 7% кислоты. Фракционирование белков проводили по их растворимости в воде, разбавленных растворах солей и спиртов, 70% этанола в воде. Относительную биологическую ценность исследуемых образцов амаранта определяли с помощью тест-организма Tetrahymena pyriformis. Результаты анализа изучали в работе с помощью методов вариационной статистики.

В первой серии экспериментов выбранный для исследований сорт амаранта разделен на три части. Первую заморозили жидким азотом в течение 3 с., вторую — медленно (в течение 2,5…3 с.), третью — сухим азотом в течение 16 недель. Периодически проводили замораживание и длительность хранения, о чем свидетельствуют данные табл. 5.4.

<table>
<thead>
<tr>
<th>Условия замораживания</th>
<th>Условия эксперимента</th>
</tr>
</thead>
<tbody>
<tr>
<td>Быстрое замораживание (А)</td>
<td>1</td>
</tr>
<tr>
<td>Свежее зерно</td>
<td>19,6</td>
</tr>
<tr>
<td>После замораживания</td>
<td>18,8</td>
</tr>
<tr>
<td>Потери, %</td>
<td>4,2</td>
</tr>
<tr>
<td>В конце хранения</td>
<td>18,2</td>
</tr>
<tr>
<td>Потери, %</td>
<td>8,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Условия замораживания</th>
<th>Условия эксперимента</th>
</tr>
</thead>
<tbody>
<tr>
<td>Медленное замораживание (В)</td>
<td>1</td>
</tr>
<tr>
<td>Свежее зерно</td>
<td>19,6</td>
</tr>
<tr>
<td>После замораживания</td>
<td>16,0</td>
</tr>
<tr>
<td>Потери, %</td>
<td>8,2</td>
</tr>
<tr>
<td>В конце хранения</td>
<td>15,0</td>
</tr>
<tr>
<td>Потери, %</td>
<td>22,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Условия замораживания</th>
<th>Условия эксперимента</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль (С)</td>
<td>1</td>
</tr>
<tr>
<td>Свежее зерно</td>
<td>19,6</td>
</tr>
<tr>
<td>В конце хранения</td>
<td>13,6</td>
</tr>
<tr>
<td>Потери, %</td>
<td>30,4</td>
</tr>
</tbody>
</table>
Результаты наших исследований согласуются с теорией Б. Люте относительно чрезвычайной роли в процессах кристаллизации физико-химической природы и особенно концентрации веществ, находящихся в замораживаемом растворе.

На основании выполненных исследований можно сделать вывод, что замораживание зерна амаранта перед сублимационной сушкой или измельчением вызывает незначительные изменения в структуре биокомпонентов клетки, особенно при быстром замораживании. Преобладающие количества фракции связанной воды в зерне амаранта играют важную роль в стабилизации и функциональной интеграции внутриклеточных макромолекул и мембранных структур. Наиболее эффективным в отношении качества сырья является хранение его в замороженном состоянии при низких температурах.

В табл. 5.5 приведены данные изменения содержания азотистых компонентов в зерне амаранта при разных температурах обработки.

Таблица 5.5. Изменение содержания азотистых компонентов в зерне амаранта при разных условиях эксперимента

<table>
<thead>
<tr>
<th>Образец зерна</th>
<th>Азот</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>общего, %</td>
</tr>
<tr>
<td></td>
<td>от СВ</td>
</tr>
<tr>
<td>1</td>
<td>4,4 ± 0,57</td>
</tr>
<tr>
<td>Необработанное зерно</td>
<td>3,9 ± 0,48</td>
</tr>
<tr>
<td>Зерно при хранении (4…8 °С) на протяжении 16 недель</td>
<td>3,8 ± 0,19</td>
</tr>
<tr>
<td>Зерно после замораживания (0…196 °С)</td>
<td>3,9 ± 0,48</td>
</tr>
<tr>
<td>Зерно после сублимации (4…20 °С)</td>
<td>3,9 ± 0,24</td>
</tr>
<tr>
<td>Зерно после сублимации (100…120 °С)</td>
<td>4,4 ± 0,57</td>
</tr>
</tbody>
</table>

Как видно из данных таблицы, общее содержание азотистых компонентов в образцах амаранта почти не изменилось. Даже при тепловой обработке зерна их количество увеличилось всего на 0,5 % за счет преобразований биосоединений. Зато соотношение белковой и небелковой формы азота изменилось в этом образце в сторону увеличения количества небелковой составляющей (с 10,6 до 25,7 %). Физические воздействия вызывают существенные изменения в качественном составе белков амаранта, влияя на растворимость отдельных белковых фракций (табл. 5.6). При этом действие низких и высоких температур приводит к противоположным изменениям.
Таблица 5.6. Перераспределение фракционного состава амаранта при разных способах обработки

<table>
<thead>
<tr>
<th>Образец зерна</th>
<th>Фракционный состав белка, %</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Водорастворимый</td>
<td>Солерастворимый</td>
<td>Спиртостойкий</td>
<td>Целлоидинистый</td>
<td>Нерастворимый</td>
</tr>
<tr>
<td>1</td>
<td>25,7 ± 0,18</td>
<td>10,3 ± 0,42</td>
<td>21,6 ± 0,36</td>
<td>23,7 ± 0,15</td>
<td>18,7 ± 0,48</td>
</tr>
<tr>
<td>Нерастворимое зерно</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зерно при хранении (4...8 °C) на протяжении 16 недель</td>
<td>25,4 ± 0,32</td>
<td>10,3 ± 0,18</td>
<td>18,8 ± 0,24</td>
<td>20,2 ± 0,59</td>
<td>25,3 ± 0,34</td>
</tr>
<tr>
<td>Зерно после замораживания (0...-196 °C)</td>
<td>32,1 ± 0,40</td>
<td>14,5 ± 0,14</td>
<td>22,6 ± 0,58</td>
<td>24,4 ± 0,17</td>
<td>8,4 ± 0,31</td>
</tr>
<tr>
<td>Зерно после сублимации (4...20 °C)</td>
<td>26,3 ± 0,16</td>
<td>16,3 ± 0,42</td>
<td>25,8 ± 0,14</td>
<td>22,9 ± 0,51</td>
<td>12,9 ± 0,27</td>
</tr>
<tr>
<td>Зерно после сублимации (100...120 °C)</td>
<td>14,9 ± 0,27</td>
<td>8,4 ± 0,48</td>
<td>19,5 ± 0,64</td>
<td>18,1 ± 0,64</td>
<td>39,1 ± 0,16</td>
</tr>
</tbody>
</table>

Результаты показали, что наиболее доступны действию протеолитических ферментов лезкорастворимые белковые фракции. Нерастворимый белковый остаток при пепсиновом, лихомитрипсином не расщепляется. О скорости ферментативного гидролиза белков судили по величине прироста оптической плотности гидролизатов, измеренной на спектрофотометре СФ-4 при длине волны 280 нм. В табл. 5.7 и 5.8 приведены результаты определения оптической плотности гидролизатов водорастворимой фракции белка зерна амаранта после сушики двух типов (низкотемпературной и тепловой). Контроль - необработанное зерно.

Таблица 5.7. Изменение оптической плотности гидролизатов белков зерна амаранта при пепсиновом гидролизе в течение 4 часов

Условие эксперимента	Оptическая плотность, ед. опт. плотности			
1-й ч.	2-й ч.	3-й ч.	4-й ч.	
Необработанное зерно	0,268	0,336	0,422	0,484
Низкотемпературная сушика	0,294	0,389	0,446	0,495
Теплова сушика	0,126	0,202	0,258	0,306

Таблица 5.8. Изменение оптической плотности гидролизатов белков зерна амаранта при химотрипсиновом гидролизе в течение 4 часов

Условие эксперимента	Оptическая плотность, ед. опт. плотности			
1-й ч.	2-й ч.	3-й ч.	4-й ч.	
Необработанное зерно	0,592	0,710	0,798	0,804
Низкотемпературная сушика	0,596	0,734	0,845	0,858
Теплова сушика	0,391	0,439	0,482	0,518
При сравнении данных таблиц видно, что белок амаранта после низкотемпературной сушки переваривается даже лучше, чем белок необработанного зерна. Причина состоит в том, что изменения, происходящие под действием низких температур, способствовали просветлению крахмала из нерастворимого состояния в растворимое (табл. 5.6). Вполне допустимо, что в необработанном зерне амаранта из-за преобладания количества связанной воды белковые молекулы были агрегированы и это состояние затрудняет расщепление белков ферментами. Температурный шок, которому подвергались клетки материала при быстром снижении температуры, способствовал разрушению этих агрегатов, высвобождению значительного количества белковых молекул, их частичной деструкции и увеличению числа свободных аминокислот, что в общем повышает биологическую ценность полученных продуктов.

После тепловой сушки, наоборот, в несколько раз увеличивается доля нерастворимого белкового остатка (табл. 5.6.), и расщепление белка таких продуктов ферментами резко падает. Особенно это проявляется на стадии химотрипсинового гидролиза, моделирующего процесс образования аминокислот в темном кислороде (табл. 5.8).

В этом случае сверхвосприимчивостью необработанного зерна и зерна после тепловой обработки отличаются в 2,5...2,7 раза. Для сравнения: перевариваемость белков после замораживания и сублимации оказалась выше, чем у контрольного образца, что объясняется теми положительными конформационными и функциональными изменениями, что произошли с белками под действием низких температур.

Результаты определения относительной биологической ценности (ОБЦ) продуктов, полученных с помощью тест-организма Tetralymphera pyriformis, показали, что необработанное зерно и зерно после сублимации имеют почти одинаковые значения ОБЦ (84,6 и 83,3 %). Эти цифры согласуются с данными химотрипсинового гидролиза, так и с результатами определения содержания в амаранте растворимых белков фракций. При тепловой обработке амаранта ОБЦ продукта уменьшается до 37,7 %.

Согласно литературным сведениям, биологическая ценность белков, определенная с помощью тест-организма Tetralymphera pyriformis, адекватна биологической ценности этих продуктов, проведенной в эксперименте на лабораторных животных. Можно считать, что для продуктов из зерна амаранта биологическая ценность их, полученная при исследованиях на лабораторных животных, будет составлять 80 %.

Подводя итоги, полученные с помощью трех разных методов, можно сказать, что химическая оценка свидетельствует о более глубоких изменениях, вызываемых действием низких и высоких температур, чем биологические. Таким образом, с целью получения наиболее полной информации о количественных и качественных изменениях белковых компонентов при различных технологических условиях обработки материала целесообразно комплексное использование всех трех методов оценки.

На основании проведенных исследований и полученных результатов можно сделать вывод, что биологические показатели продуктов переработки растительных материалов на отдельных стадиях процесса непосредственно связаны с температурой и с её повышением значительно ухудшаются. Применение температур ниже нуля позволяет улучшить биологическую ценность полученных продуктов, что проявляется в повышении скорости и степени расщепления белков протеолитическими ферментами.

Представляют также интерес исследования структурных изменений белков и вводящих в их состав аминокислот при замораживании амаранта и его хранения. Как уже написано выше, зерно амаранта замораживалось жидким азотом и выдерживало при температуре -18 °C в течение месяца, периодически определяя содержание аминокислот в разных фракциях белков. В табл. 5.9-5.12 приведены результаты определения содержания аминокислот во фракциях белка — соответственно, водорастворимой, солерастворимой, непроценты и сухого вещества.

Сравнительный анализ этих данных дает возможность сделать ряд обобщений. В свежем зерне амаранта по низким и средним аминокислотам преобладают вода- и солерастворимые фракции белков. Они содержат значительное количество лизина, фенилаланина, лейцина, изолейцина, трautocomplete и г. д. Для белковой кислоты белого типа из четырех фракций бобовых. Никто аминокислоты представлены в меньшей степени, однако, они присутствуют, и это сообщает биологическую полноту белкам амаранта. Трифосфаты богаты албуминовыми и губокными фракциями. В общем, из четырех установленных в зерне амаранта фракций белков только одна — водорастворимая — является полноценной, поскольку содержит все необходимые аминокислоты, в том числе эссенциальные. Солерастворимая фракция неполовина по трифосфату; целиакрилатная — по метионину, трифосфату; цистину; синтетическому — по ионину.

Анализ содержания аминокислот в зерне амаранта после замороживания показывает, как изменение произошло с биокомпонентами амаранта. В результате структурных и конформационных преобразований белков соотношения между
Таблица 5.9. Содержание аминокислот в водорастворимой фракции, % от общего содержания в белке амаранта

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>Условие эксперимента</th>
<th>Контроль</th>
<th>После замораживания</th>
<th>Через 30 дней хранения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Лизин</td>
<td>1,85 ± 0,012</td>
<td>2,68 ± 0,037</td>
<td>2,74 ± 0,026</td>
<td></td>
</tr>
<tr>
<td>Гистидин</td>
<td>0,94 ± 0,017</td>
<td>0,96 ± 0,015</td>
<td>0,80 ± 0,040</td>
<td></td>
</tr>
<tr>
<td>Фенилalanин</td>
<td>1,22 ± 0,026</td>
<td>1,47 ± 0,032</td>
<td>1,54 ± 0,017</td>
<td></td>
</tr>
<tr>
<td>Тирозин</td>
<td>0,65 ± 0,040</td>
<td>0,58 ± 0,010</td>
<td>0,68 ± 0,046</td>
<td></td>
</tr>
<tr>
<td>Лейцин</td>
<td>2,12 ± 0,074</td>
<td>3,11 ± 0,005</td>
<td>3,05 ± 0,052</td>
<td></td>
</tr>
<tr>
<td>Изолейцин</td>
<td>1,06 ± 0,003</td>
<td>1,17 ± 0,024</td>
<td>1,54 ± 0,032</td>
<td></td>
</tr>
<tr>
<td>Метионин</td>
<td>0,32 ± 0,090</td>
<td>0,68 ± 0,019</td>
<td>0,88 ± 0,018</td>
<td></td>
</tr>
<tr>
<td>Валин</td>
<td>1,15 ± 0,066</td>
<td>1,98 ± 0,037</td>
<td>2,11 ± 0,044</td>
<td></td>
</tr>
<tr>
<td>Цистин</td>
<td>0,42 ± 0,081</td>
<td>1,05 ± 0,042</td>
<td>1,38 ± 0,046</td>
<td></td>
</tr>
<tr>
<td>Аланин</td>
<td>0,58 ± 0,006</td>
<td>0,62 ± 0,041</td>
<td>0,84 ± 0,023</td>
<td></td>
</tr>
<tr>
<td>Глицин</td>
<td>3,75 ± 0,024</td>
<td>3,88 ± 0,005</td>
<td>3,66 ± 0,017</td>
<td></td>
</tr>
<tr>
<td>Пролин</td>
<td>0,84 ± 0,017</td>
<td>0,84 ± 0,032</td>
<td>0,92 ± 0,010</td>
<td></td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td>8,17 ± 0,025</td>
<td>9,35 ± 0,011</td>
<td>11,20 ± 0,02</td>
<td></td>
</tr>
<tr>
<td>Серин</td>
<td>1,16 ± 0,051</td>
<td>1,28 ± 0,024</td>
<td>1,06 ± 0,050</td>
<td></td>
</tr>
<tr>
<td>Глицин</td>
<td>3,75 ± 0,024</td>
<td>3,88 ± 0,005</td>
<td>3,66 ± 0,017</td>
<td></td>
</tr>
<tr>
<td>Пролин</td>
<td>0,84 ± 0,017</td>
<td>0,84 ± 0,032</td>
<td>0,92 ± 0,010</td>
<td></td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td>8,17 ± 0,025</td>
<td>9,35 ± 0,011</td>
<td>11,20 ± 0,02</td>
<td></td>
</tr>
<tr>
<td>Серин</td>
<td>1,16 ± 0,051</td>
<td>1,28 ± 0,024</td>
<td>1,06 ± 0,050</td>
<td></td>
</tr>
<tr>
<td>Глицин</td>
<td>3,75 ± 0,024</td>
<td>3,88 ± 0,005</td>
<td>3,66 ± 0,017</td>
<td></td>
</tr>
<tr>
<td>Пролин</td>
<td>0,84 ± 0,017</td>
<td>0,84 ± 0,032</td>
<td>0,92 ± 0,010</td>
<td></td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td>8,17 ± 0,025</td>
<td>9,35 ± 0,011</td>
<td>11,20 ± 0,02</td>
<td></td>
</tr>
</tbody>
</table>

Серосодержащих аминокислот после замораживания стало значительно больше в трех фракциях: в водорастворимой - метионин на 53,3 %, цистин - на 60 %; в солерастворимой - метионин на 59 %, цистин - на 44 %; в саперверосо- римой - цистин на 77 %. Более того, в первоочередной фракции свежего зерна амаранта метионин отсутствует, а в пробах после замораживания он идентифицирован. Эта же фракция белка после замораживания обогатилась еще одной аминокислотой - триптофаном (0,65 %). Наличие триптофана после замораживания установлена и в солерастворимой фракции, то есть в результате действия низких температур эта фракция белка тоже стала полноценной.

Таблица 5.10. Содержание аминокислот в солерастворимой фракции, % от общего содержания в белке амаранта

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>Условие эксперимента</th>
<th>Контроль</th>
<th>После замораживания</th>
<th>Через 30 дней хранения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Лизин</td>
<td>1,42 ± 0,026</td>
<td>1,76 ± 0,049</td>
<td>1,94 ± 0,066</td>
<td></td>
</tr>
<tr>
<td>Гистидин</td>
<td>0,81 ± 0,003</td>
<td>0,76 ± 0,080</td>
<td>0,92 ± 0,074</td>
<td></td>
</tr>
<tr>
<td>Фенилalanин</td>
<td>1,65 ± 0,021</td>
<td>1,90 ± 0,027</td>
<td>2,15 ± 0,040</td>
<td></td>
</tr>
<tr>
<td>Тирозин</td>
<td>1,14 ± 0,042</td>
<td>1,28 ± 0,074</td>
<td>1,25 ± 0,021</td>
<td></td>
</tr>
<tr>
<td>Лейцин</td>
<td>2,08 ± 0,018</td>
<td>2,94 ± 0,044</td>
<td>3,17 ± 0,015</td>
<td></td>
</tr>
<tr>
<td>Изолейцин</td>
<td>1,15 ± 0,051</td>
<td>1,85 ± 0,018</td>
<td>1,94 ± 0,032</td>
<td></td>
</tr>
<tr>
<td>Метионин</td>
<td>0,35 ± 0,026</td>
<td>0,85 ± 0,063</td>
<td>0,96 ± 0,041</td>
<td></td>
</tr>
<tr>
<td>Валин</td>
<td>1,38 ± 0,070</td>
<td>1,85 ± 0,075</td>
<td>2,14 ± 0,025</td>
<td></td>
</tr>
<tr>
<td>Цистин</td>
<td>0,65 ± 0,018</td>
<td>1,16 ± 0,034</td>
<td>1,22 ± 0,060</td>
<td></td>
</tr>
<tr>
<td>Аланин</td>
<td>0,74 ± 0,099</td>
<td>0,76 ± 0,015</td>
<td>0,64 ± 0,031</td>
<td></td>
</tr>
<tr>
<td>Глицин</td>
<td>3,68 ± 0,012</td>
<td>3,74 ± 0,048</td>
<td>3,88 ± 0,031</td>
<td></td>
</tr>
<tr>
<td>Пролин</td>
<td>1,07 ± 0,040</td>
<td>1,25 ± 0,044</td>
<td>1,34 ± 0,009</td>
<td></td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td>10,10 ± 0,018</td>
<td>11,34 ± 0,046</td>
<td>12,16 ± 0,051</td>
<td></td>
</tr>
<tr>
<td>Серин</td>
<td>0,97 ± 0,042</td>
<td>1,16 ± 0,013</td>
<td>1,06 ± 0,010</td>
<td></td>
</tr>
<tr>
<td>Триптофан</td>
<td>1,8 ± 0,013</td>
<td>1,70 ± 0,052</td>
<td>1,92 ± 0,040</td>
<td></td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td>10,10 ± 0,018</td>
<td>11,34 ± 0,046</td>
<td>12,16 ± 0,051</td>
<td></td>
</tr>
<tr>
<td>Серины</td>
<td>0,97 ± 0,042</td>
<td>1,16 ± 0,013</td>
<td>1,06 ± 0,010</td>
<td></td>
</tr>
<tr>
<td>Триптофан</td>
<td>1,8 ± 0,013</td>
<td>1,70 ± 0,052</td>
<td>1,92 ± 0,040</td>
<td></td>
</tr>
</tbody>
</table>

Некоторые аминокислоты - аландин, пролин, глицин и др. - остались в прежнем количестве, а содержание других (тирозин, аргинина) после замораживания уменьшилось. После 30-дневного хранения замороженного амаранта при температуре -18 °C в аминокислотном составе белков произошли такие изменения: количество незаменимых аминокислот практически осталось таким же, как и непо-
средством после замораживания, а в некоторых случаях даже несколько увеличилось (лизин, фенилаланин).

Таким образом, наиболее существенные положительные изменения в результате замораживания произошли в водо- и солерасторвимых фракциях. Спирто- и щелочерасторвимые фракции белка амаранта, как и в других зерновых культурах, являются запасными белками, и поэтому отсутствие в них изменений не влияет на полноценность белкового состава полученных сублимированных биологически активных добавок из амаранта.

Таблица 5.11. Содержание аминокислот в щелочерасторвимой фракции, % от общего содержания в белке амаранта

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>Условие эксперимента</th>
<th>Контроль</th>
<th>После замораживания</th>
<th>Через 30 дней хранения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лизин</td>
<td></td>
<td>0,80 ± 0,042</td>
<td>0,80 ± 0,053</td>
<td>0,94 ± 0,048</td>
</tr>
<tr>
<td>Гистидин</td>
<td></td>
<td>0,37 ± 0,090</td>
<td>0,42 ± 0,020</td>
<td>0,40 ± 0,009</td>
</tr>
<tr>
<td>Фенилаланин</td>
<td></td>
<td>0,94 ± 0,031</td>
<td>0,98 ± 0,003</td>
<td>1,06 ± 0,009</td>
</tr>
<tr>
<td>Тирозин</td>
<td></td>
<td>1,05 ± 0,099</td>
<td>0,84 ± 0,074</td>
<td>1,12 ± 0,074</td>
</tr>
<tr>
<td>Лейцин</td>
<td></td>
<td>0,85 ± 0,010</td>
<td>1,16 ± 0,012</td>
<td>1,40 ± 0,042</td>
</tr>
<tr>
<td>Изолейцин</td>
<td></td>
<td>0,70 ± 0,099</td>
<td>1,18 ± 0,066</td>
<td>1,35 ± 0,043</td>
</tr>
<tr>
<td>Метионин</td>
<td></td>
<td>-</td>
<td>0,37 ± 0,018</td>
<td>0,55 ± 0,051</td>
</tr>
<tr>
<td>Валин</td>
<td></td>
<td>0,55 ± 0,020</td>
<td>0,76 ± 0,021</td>
<td>0,70 ± 0,025</td>
</tr>
<tr>
<td>Цистин</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Аланин</td>
<td></td>
<td>0,18 ± 0,027</td>
<td>0,24 ± 0,027</td>
<td>0,28 ± 0,037</td>
</tr>
<tr>
<td>Глицин</td>
<td></td>
<td>3,07 ± 0,014</td>
<td>3,44 ± 0,032</td>
<td>3,42 ± 0,019</td>
</tr>
<tr>
<td>Пролин</td>
<td></td>
<td>1,05 ± 0,074</td>
<td>1,17 ± 0,015</td>
<td>1,08 ± 0,016</td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td></td>
<td>13,11 ± 0,063</td>
<td>13,98 ± 0,032</td>
<td>14,20 ± 0,049</td>
</tr>
<tr>
<td>Серин</td>
<td></td>
<td>1,34 ± 0,012</td>
<td>1,28 ± 0,048</td>
<td>1,45 ± 0,008</td>
</tr>
<tr>
<td>Треонин</td>
<td></td>
<td>0,88 ± 0,017</td>
<td>0,88 ± 0,018</td>
<td>0,94 ± 0,052</td>
</tr>
<tr>
<td>Аспарагиновая кислота</td>
<td></td>
<td>1,61 ± 0,013</td>
<td>2,16 ± 0,029</td>
<td>2,45 ± 0,020</td>
</tr>
<tr>
<td>Аргинин</td>
<td></td>
<td>1,42 ± 0,018</td>
<td>1,36 ± 0,057</td>
<td>1,54 ± 0,033</td>
</tr>
<tr>
<td>Триптофан</td>
<td></td>
<td>-</td>
<td>0,65 ± 0,032</td>
<td>0,84 ± 0,022</td>
</tr>
</tbody>
</table>

Таблица 5.12. Содержание аминокислот в спирто-растворимой фракции, % от общего содержания в белке амаранта

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>Условие эксперимента</th>
<th>Контроль</th>
<th>После замораживания</th>
<th>Через 30 дней хранения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лизин</td>
<td></td>
<td>1,21 ± 0,018</td>
<td>1,36 ± 0,012</td>
<td>1,58 ± 0,045</td>
</tr>
<tr>
<td>Гистидин</td>
<td></td>
<td>0,56 ± 0,025</td>
<td>0,64 ± 0,021</td>
<td>0,60 ± 0,012</td>
</tr>
<tr>
<td>Фенилаланин</td>
<td></td>
<td>1,24 ± 0,015</td>
<td>1,49 ± 0,025</td>
<td>1,54 ± 0,028</td>
</tr>
<tr>
<td>Тирозин</td>
<td></td>
<td>0,70 ± 0,020</td>
<td>0,77 ± 0,042</td>
<td>0,86 ± 0,049</td>
</tr>
<tr>
<td>Лейцин</td>
<td></td>
<td>0,90 ± 0,026</td>
<td>1,34 ± 0,019</td>
<td>1,50 ± 0,074</td>
</tr>
<tr>
<td>Изолейцин</td>
<td></td>
<td>0,44 ± 0,042</td>
<td>0,69 ± 0,009</td>
<td>0,86 ± 0,018</td>
</tr>
<tr>
<td>Метионин</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Валин</td>
<td></td>
<td>0,16 ± 0,063</td>
<td>0,29 ± 0,099</td>
<td>0,38 ± 0,015</td>
</tr>
<tr>
<td>Цистин</td>
<td></td>
<td>0,05 ± 0,017</td>
<td>0,22 ± 0,037</td>
<td>0,36 ± 0,010</td>
</tr>
<tr>
<td>Аланин</td>
<td></td>
<td>1,64 ± 0,050</td>
<td>1,78 ± 0,040</td>
<td>1,95 ± 0,029</td>
</tr>
<tr>
<td>Глицин</td>
<td></td>
<td>4,06 ± 0,020</td>
<td>4,38 ± 0,032</td>
<td>4,44 ± 0,018</td>
</tr>
<tr>
<td>Пролин</td>
<td></td>
<td>0,65 ± 0,032</td>
<td>0,55 ± 0,014</td>
<td>0,76 ± 0,037</td>
</tr>
<tr>
<td>Глютаминовая кислота</td>
<td></td>
<td>10,84 ± 0,010</td>
<td>10,95 ± 0,029</td>
<td>12,14 ± 0,018</td>
</tr>
<tr>
<td>Серин</td>
<td></td>
<td>1,57 ± 0,034</td>
<td>1,64 ± 0,025</td>
<td>2,05 ± 0,040</td>
</tr>
<tr>
<td>Треонин</td>
<td></td>
<td>0,74 ± 0,099</td>
<td>0,68 ± 0,020</td>
<td>0,85 ± 0,074</td>
</tr>
<tr>
<td>Аспарагиновая кислота</td>
<td></td>
<td>1,85 ± 0,005</td>
<td>2,48 ± 0,032</td>
<td>2,74 ± 0,021</td>
</tr>
<tr>
<td>Аргинин</td>
<td></td>
<td>0,66 ± 0,048</td>
<td>0,84 ± 0,014</td>
<td>1,16 ± 0,052</td>
</tr>
<tr>
<td>Триптофан</td>
<td></td>
<td>0,87 ± 0,035</td>
<td>0,94 ± 0,028</td>
<td>1,15 ± 0,041</td>
</tr>
</tbody>
</table>

Общий вывод на основании полученных результатов состоит в том, что после замораживания в процессе хранения зерна амаранта происходит перераспределение аминокислотных остатков в молекулах белков. Структурные изменения белков при замораживании выражаются в частичной денатурации, образованием межмолекулярных коаленатных S-S-связей в результате окисления активных SH-групп и, наоборот, разрушением S-S-связей в нативных молекулах белков, а это свидетельствует увеличение концентрации тиоаминокислот.

5.4. Повышение биологической ценности амаранта диспергированием

Процесс измельчения является одним из основных в технологии пищевых добавок, поскольку их усвояемость, а значит профилактический и лечебный эффекты, во многом определяются степенью дисперсности материала. Более того,
при получении пищевых добавок повышенной биологической активности процесс
сых замедления, прессования, таблетирования и т.д. представляют одну из ключе
вых позиций в связи с тем, что именно благодаря этим процессам готовые формы
пищевых добавок и различных комбинационных смесей приобретают воспроизвод
имые физико-химические и технологические параметры, определяющие в преобла
дающей степени их биологический эффект.

В связи с изложенными понятиями значимость работ, касающихся исследова
ний по выявлению изменений физико-химических и технологических свойств пи
щевых добавок при их измельчении и подборе соответствующего оборудования.

Из этого следует, что существенные изменения в свойствах природных
лекарственных соединений происходят при их совместном измельчении с полиме
ром. При этом, с одной стороны, повышается биодоступность трудно раствор
имых лекарственных веществ, а с другой стороны, отмечается возможность получение
пролонгированных препаратов для долго растворимых и быстрорасщедающихся из
организма соединении.

Эти предпосылки, результаты собственных экспериментальных испыта
ний и предполагают направление наших научных исследований для решения
данной задачи.

Оценкой структурных особенностей амаранта является наличие в оболочке
зерна большого количества кремния, что, как известно, затрудняет процесс его из
мельчения, препятствует переработке в ЖКТ и достаточно полно используется
биокомпонентами.

Для повышения биологической и пищевой ценности зерна амаранта его за
мораживали жидким азотом, сублимировали и высушенный продукт измельчали в уп
тературном дезинтеграторе-активаторе, разработанном Талихинским СКТИ
"Дезинтегратор". Обработка амарацита в дезинтеграторе позволила получить вы
сококолированные порошки, что является основным условием качества приготовлен
ных на его основе соков, напитков, кондитерских и других изделий. На этой с
той, дезинтеграторная технология способствует активации сублимированного
порошка. И в этом случае, как и для изученных ранее К. Бармадыч и П. Бута
гими особенностями механохимии в полимерах, твердых телах, механохимиче
ских превращениях в упругих пластмассах, к которым относятся сублимирова
нное зерно амаранта, тоже представляют собой сложный многоэтапный про
цесс. Он включает стадии механического деформирования материалов, в резуль
тате подвода и накопления механической энергии, первичную химическую реак
цию на поверхности измельчаемого материала и вторичные процессы.

Условия осуществления механической активации сублимированных зерен
амаранта таковы, что не дают практической возможности ее непосредственного
наблюдения. Информацию о характере активационных процессов получили по
коэффициентам данным - на основе методов химических и биохимических исследо
ваний.

За счет дезинтеграторной обработки биологическая ценность зерна амаранта
значительно увеличились. В результате механохимических превращений количе
ство труднорастворимых (структурных) белков уменьшилось на 9...12 %, а легкоро
створимых (усвоемых) увеличилось на 20...25 %.

Исследование подвижности гидролизуемых калия натрия амарацита показали, что он перерасходится в большей степени и с большей скоростью, чем белок сырого зерна. Повышение степени атакуемости белков амарацита протеолитическими ферментами является следствием механохимических превращений аминокислот.

Анализ табл. 5.13 и 5.14 свидетельствует о том, что при измельчении в дез
ингранторе сублимированных зерен амарацита содержание свободных аминокислот увеличилось (в %): лизин - на 42...48, лейцин и изолейцин - на 3...10, метионин - на 27...30 и т.д.

Содержание связанной аминокислоты соответственно уменьшается (табл. 5.14). Таким образом, дезинтеграционная обработка материалов дает возможность осуществить как глубокую активацию всей структуры, так и направленное регулирование свойств биокомпонент.

Таблица 5.13. Состав свободных аминокислот сублимированных зерен амарацита, мг/100 г продукта

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>По дезинтеграции</th>
<th>После дезинтеграции</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лизин</td>
<td>0,47±0,017</td>
<td>0,89±0,025</td>
</tr>
<tr>
<td>Гистидин</td>
<td>0,78±0,042</td>
<td>0,67±0,046</td>
</tr>
<tr>
<td>Фенилаланин</td>
<td>0,66±0,088</td>
<td>0,68±0,092</td>
</tr>
<tr>
<td>Тирозин</td>
<td>0,44±0,037</td>
<td>0,71±0,032</td>
</tr>
<tr>
<td>Лейцин</td>
<td>0,34±0,006</td>
<td>0,49±0,030</td>
</tr>
<tr>
<td>Изолейцин</td>
<td>0,30±0,098</td>
<td>0,44±0,048</td>
</tr>
<tr>
<td>Метионин</td>
<td>0,07±0,022</td>
<td>0,24±0,014</td>
</tr>
<tr>
<td>Валин</td>
<td>0,74±0,011</td>
<td>0,93±0,065</td>
</tr>
<tr>
<td>Цистин</td>
<td>0,01±0,032</td>
<td>0,02±0,017</td>
</tr>
<tr>
<td>Аланин</td>
<td>0,25±0,084</td>
<td>0,18±0,006</td>
</tr>
<tr>
<td>Глицин</td>
<td>0,17±0,034</td>
<td>0,85±0,023</td>
</tr>
<tr>
<td>Пролин</td>
<td>0,01±0,007</td>
<td>0,01±0,058</td>
</tr>
<tr>
<td>Глюtamиновая кислота</td>
<td>0,92±0,011</td>
<td>2,20±0,005</td>
</tr>
<tr>
<td>Серин</td>
<td>0,32±0,092</td>
<td>0,26±0,061</td>
</tr>
<tr>
<td>Триптофан</td>
<td>0,27±0,021</td>
<td>0,29±0,019</td>
</tr>
<tr>
<td>Аспартатная кислота</td>
<td>0,27±0,008</td>
<td>0,35±0,098</td>
</tr>
<tr>
<td>Треонин</td>
<td>0,18±0,034</td>
<td>0,26±0,034</td>
</tr>
</tbody>
</table>
Таблица 5.14. Состав связанных аминокислот сублимированных зерен амаранта, мг/100г продукта

<table>
<thead>
<tr>
<th>Аминокислота</th>
<th>До дегидратации</th>
<th>После дегидратации</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лizin</td>
<td>4,80 ± 0,018</td>
<td>4,00 ± 0,015</td>
</tr>
<tr>
<td>Гистидин</td>
<td>1,90 ± 0,038</td>
<td>1,40 ± 0,042</td>
</tr>
<tr>
<td>Фенилаланин</td>
<td>4,39 ± 0,088</td>
<td>4,10 ± 0,034</td>
</tr>
<tr>
<td>Тирозин</td>
<td>3,20 ± 0,015</td>
<td>2,50 ± 0,017</td>
</tr>
<tr>
<td>Лейцин</td>
<td>6,50 ± 0,077</td>
<td>5,40 ± 0,053</td>
</tr>
<tr>
<td>Изолейцин</td>
<td>3,50 ± 0,096</td>
<td>3,50 ± 0,068</td>
</tr>
<tr>
<td>Метионин</td>
<td>0,60 ± 0,013</td>
<td>0,64 ± 0,018</td>
</tr>
<tr>
<td>Валин</td>
<td>0,74 ± 0,026</td>
<td>2,50 ± 0,090</td>
</tr>
<tr>
<td>Цистин</td>
<td>1,00 ± 0,040</td>
<td>0,45 ± 0,018</td>
</tr>
<tr>
<td>Аланин</td>
<td>2,90 ± 0,077</td>
<td>2,59 ± 0,011</td>
</tr>
<tr>
<td>Глутаминовая кислота</td>
<td>47,30 ± 0,009</td>
<td>48,40 ± 0,036</td>
</tr>
<tr>
<td>Серин</td>
<td>4,80 ± 0,035</td>
<td>4,90 ± 0,024</td>
</tr>
<tr>
<td>Триптофан</td>
<td>3,50 ± 0,028</td>
<td>3,10 ± 0,022</td>
</tr>
<tr>
<td>Аспарагиновая кислота</td>
<td>6,80 ± 0,090</td>
<td>6,30 ± 0,048</td>
</tr>
<tr>
<td>Треонин</td>
<td>0,91 ± 0,094</td>
<td>0,80 ± 0,007</td>
</tr>
</tbody>
</table>

Установленные взаимопревращения способствуют повышению усвояемости полученных продуктов и дают возможность использовать их в лечебно-профилактическом питании.

В крови, дезинтеграционная обработка способствует разрочевыванию пептидных цепей белковых молекул, что указывает на изменения, которые могут привести к ускорению появления активных групп (сульфгидрилов), остатков триптофана и т.д., скрытых в нитевидных белков внутри глобулы.

5.5. Медицинские аспекты использования амаранта

В настоящее время одним из приоритетных направлений в исследовании амаранта является разработка способов использования его лекарственных свойств. Японские ученые одним из первых установили способность амаранта лечить множество различных болезней. Наблюдения за больными, пострадавшими от взрыва атомной бомбы в Хиросиме, показали, что продукты переработки зеленой массы амаранта выводят из организма радиоактивные элементы, и масса из его семян по целебным свойствам превосходит обычное и успешно используется при комплексном лечении заболеваний. Разрабатываются способы подачи амаранта лекарств для лечения лейкемий, сердечных и желудочнобоных заболеваний. Установлено, что амарант снижает содержание холестерина в организме человека и обладает выраженным противовоспалительным эффектом.

В 1991 г. в Мексике состоялся международный конгресс по амаранту, на котором широко обсуждались лечебные свойства. Участники конгресса отметили, наряду с перечисленными выше качествами амаранта, его способность к изменению ряда заболеваний, таких как диабет, излишнее веса, неврозы, амилии, атеросклероз, анемия, предупреждение негативных мутаций у детей, укрепление иммунной системы детского организма и т.д.

В лаборатории радиационной биохимии Украинского научного центра радиационной медицины проведены исследования по влиянию зерна амаранта и криопродуктов амаранта, полученных по технологии Украинского государственного университета пищевых технологий, на некоторые биохимические параметры крови лабораторных животных.

Работа выполнялась на крысах-самоках линии Вистар 5-месячного возраста с массой тела 140-150 г. Эритроциты выделяли из крови крыс путем трехкратной промывки в физиологическом растворе. Кислотные эритроциты получали, смешивая разные объемы эритроцитов с 0,9 % раствором НСЛ. Падение оптического поглощения регистрировали с интервалом 15 с на спектрофотометре DU-55 (Беникм, США).

В эритроцитах определяли активность супероксиддисмутазы, лактатдегидрогеназы, нуклеиновых кислот и молекул диксикуальной аскорбиновой кислоты. Электрофофорез белковы кровоток проводили на 5 % поликарбоксилатной геле с 0,08 М трис-боратным буфером при рН 8,3 в горизонтальной электрофотографической системе «Мультивокс» (Швеция). Гель окрашивали в 0,01 % Кумаси голубым G-250. Денситометрией пелей проводили на денситометре «Камаг» (Данан, Швейцария). Все животные - четыре группы - ежедневно получали с пищей (творог) по 200 мг сублимированного зерна амаранта и по 200 мг криопродуктов амаранта. При этом 1-я группа - контрольная (интактные животные), 2-я и 3-я - экспериментальные, получившие сублимированное зерно амаранта 2 и криопродуктов амаранта 3, 4, 5. В группе контроля: 14 суток за 3 суток до облучения и после. Затем животных исследовали. Статистическую обработку результатов проводили стандартными методами вариационной статистики. В табл. 5.15 приведены данные относительного содержания различных по устойчивости форм эритроцитов в разных группах животных.

Из приведенных данных следует, что введение в пищевой рацион криопродуктов амаранта вызывает изменения в характере гемолиза эритроцитов. Основной пик гемолиза приходится на более поздний период. Соответственно этому уменьшается доля некротизированных форм эритроцитов, что свидетельствует о благоприятном воздействии криопродуктов амаранта на процессы эритропоза, об определенном защищенном эффекте их для клеточных мембран.
Потребление криопродуктов амаранта вызывает нормализацию активности этих ферментов. Об эффективности использования амаранта свидетельствует определенное снижение уровня перекисного окисления липидов, что проявляется в уменьшении содержания как диеновых конъюгатов липидов, так и малонового диальдегида.

Как известно, одним из характерных биохимических показателей, отражающих общее состояние организма человека, является белковый спектр сыворотки крови. Характерным эффектом многих негативных воздействий является снижение относительного содержания фракции альбумин и увеличение гамма-глобулинов. Ежедневное потребление криопродуктов амаранта вызывает достоверные положительные сдвиги в белковом спектре сыворотки крови (табл. 5.17).

Снижение доли гамма-глобулинов, в частности, позволяет заключить, что исследуемые препараты способны влиять на процессы пероксидации, что в значительной степени снизяет токсический эффект гамма-облучения на организм.

По эффективности двух исследуемых криопродуктов - сулбаминированное зерно и криопорошок амаранта - различаются мало. Однако действие криопорошка в экспериментальных условиях дает более стабильный результат, что проявляется в снижении разброса данных.

Таблица 5.16. Активность супeroxиддисмутазы (СОД) и каталазы и содержание продуктов ПОЛ в сыворотке крови группы животных

<table>
<thead>
<tr>
<th>Группа животных</th>
<th>СОД (ИЕ)</th>
<th>Каталаза (МЕ)</th>
<th>Продукты ПОЛ, мМ</th>
<th>МДА, нМ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-я</td>
<td>9,8 ± 0,6</td>
<td>443 ± 17</td>
<td>3,2 ± 0,2</td>
<td>2,3 ± 0,1</td>
</tr>
<tr>
<td>2-я</td>
<td>10,9 ± 0,1</td>
<td>409 ± 27</td>
<td>3,8 ± 0,3</td>
<td>2,8 ± 0,1</td>
</tr>
<tr>
<td>3-я</td>
<td>11,2 ± 0,1</td>
<td>413 ± 21</td>
<td>3,7 ± 0,3</td>
<td>2,0 ± 0,1</td>
</tr>
<tr>
<td>4-я</td>
<td>14,0 ± 0,7</td>
<td>353 ± 34</td>
<td>4,1 ± 0,3</td>
<td>3,5 ± 0,2</td>
</tr>
</tbody>
</table>

p ≤ 0,05 по сравнению с контрольной группой (1)

Данные табл. 5.16 свидетельствуют о достоверном повышении активности СОД у облученных животных (4-я группа). При этом активность каталазы несколько снижается. Как известно, СОД является ферментом индуцибельным, то есть его содержание и активность обычно прямо коррелируют с интенсивностью генерации свободных радикалов, по крайней мере супероксидов. Поскольку эти два фермента должны работать строго сопряженно, вполне возможно, что активность каталазы оказывается недостаточной для ликвидации образующейся гиперпероксидации. Таким образом, сама антиоксидантная система может выступать как постоянно действующий позаимствующий фактор.
Список использованной литературы
к разделу 5